Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.



23695
23696
23697
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23695

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the Tables training pipeline. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


23607
23608
23609
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23607

def additional_experiments
  @additional_experiments
end

#disable_early_stoppingBoolean Also known as: disable_early_stopping?

Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used. Corresponds to the JSON property disableEarlyStopping

Returns:

  • (Boolean)


23614
23615
23616
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23614

def disable_early_stopping
  @disable_early_stopping
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



23620
23621
23622
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23620

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision- recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" ( default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error ( MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


23637
23638
23639
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23637

def optimization_objective
  @optimization_objective
end

#optimization_objective_precision_valueFloat

Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectivePrecisionValue

Returns:

  • (Float)


23643
23644
23645
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23643

def optimization_objective_precision_value
  @optimization_objective_precision_value
end

#optimization_objective_recall_valueFloat

Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectiveRecallValue

Returns:

  • (Float)


23649
23650
23651
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23649

def optimization_objective_recall_value
  @optimization_objective_recall_value
end

#prediction_typeString

The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings. Corresponds to the JSON property predictionType

Returns:

  • (String)


23658
23659
23660
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23658

def prediction_type
  @prediction_type
end

#target_columnString

The column name of the target column that the model is to predict. Corresponds to the JSON property targetColumn

Returns:

  • (String)


23663
23664
23665
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23663

def target_column
  @target_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


23676
23677
23678
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23676

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



23684
23685
23686
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23684

def transformations
  @transformations
end

#weight_column_nameString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumnName

Returns:

  • (String)


23693
23694
23695
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23693

def weight_column_name
  @weight_column_name
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23700

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value)
  @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value)
  @prediction_type = args[:prediction_type] if args.key?(:prediction_type)
  @target_column = args[:target_column] if args.key?(:target_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name)
end