Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata

Returns a new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.



5085
5086
5087
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5085

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#dense_shape_tensor_nameString

Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https:// www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property denseShapeTensorName

Returns:

  • (String)


4998
4999
5000
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 4998

def dense_shape_tensor_name
  @dense_shape_tensor_name
end

#encoded_baselinesArray<Object>

A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor. Corresponds to the JSON property encodedBaselines

Returns:

  • (Array<Object>)


5005
5006
5007
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5005

def encoded_baselines
  @encoded_baselines
end

#encoded_tensor_nameString

Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table. Corresponds to the JSON property encodedTensorName

Returns:

  • (String)


5013
5014
5015
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5013

def encoded_tensor_name
  @encoded_tensor_name
end

#encodingString

Defines how the feature is encoded into the input tensor. Defaults to IDENTITY. Corresponds to the JSON property encoding

Returns:

  • (String)


5018
5019
5020
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5018

def encoding
  @encoding
end

#feature_value_domainGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain

Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre- processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. Corresponds to the JSON property featureValueDomain



5030
5031
5032
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5030

def feature_value_domain
  @feature_value_domain
end

#group_nameString

Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name. Corresponds to the JSON property groupName

Returns:

  • (String)


5039
5040
5041
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5039

def group_name
  @group_name
end

#index_feature_mappingArray<String>

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. Corresponds to the JSON property indexFeatureMapping

Returns:

  • (Array<String>)


5046
5047
5048
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5046

def index_feature_mapping
  @index_feature_mapping
end

#indices_tensor_nameString

Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property indicesTensorName

Returns:

  • (String)


5053
5054
5055
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5053

def indices_tensor_name
  @indices_tensor_name
end

#input_baselinesArray<Object>

Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution. feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2. x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri. Corresponds to the JSON property inputBaselines

Returns:

  • (Array<Object>)


5067
5068
5069
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5067

def input_baselines
  @input_baselines
end

#input_tensor_nameString

Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow. Corresponds to the JSON property inputTensorName

Returns:

  • (String)


5073
5074
5075
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5073

def input_tensor_name
  @input_tensor_name
end

#modalityString

Modality of the feature. Valid values are: numeric, image. Defaults to numeric. Corresponds to the JSON property modality

Returns:

  • (String)


5078
5079
5080
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5078

def modality
  @modality
end

#visualizationGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization

Visualization configurations for image explanation. Corresponds to the JSON property visualization



5083
5084
5085
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5083

def visualization
  @visualization
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5090

def update!(**args)
  @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name)
  @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines)
  @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name)
  @encoding = args[:encoding] if args.key?(:encoding)
  @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain)
  @group_name = args[:group_name] if args.key?(:group_name)
  @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping)
  @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name)
  @input_baselines = args[:input_baselines] if args.key?(:input_baselines)
  @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name)
  @modality = args[:modality] if args.key?(:modality)
  @visualization = args[:visualization] if args.key?(:visualization)
end