Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
A trained machine learning Model.
Instance Attribute Summary collapse
-
#artifact_uri ⇒ String
Immutable.
-
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions.
-
#create_time ⇒ String
Output only.
-
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only.
-
#description ⇒ String
The description of the Model.
-
#display_name ⇒ String
Required.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#etag ⇒ String
Used to perform consistent read-modify-write updates.
-
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
-
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models.
-
#metadata ⇒ Object
Immutable.
-
#metadata_artifact ⇒ String
Output only.
-
#metadata_schema_uri ⇒ String
Immutable.
-
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
-
#name ⇒ String
The resource name of the Model.
-
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
-
#pipeline_job ⇒ String
Optional.
-
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
-
#supported_deployment_resources_types ⇒ Array<String>
Output only.
-
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only.
-
#supported_input_storage_formats ⇒ Array<String>
Output only.
-
#supported_output_storage_formats ⇒ Array<String>
Output only.
-
#training_pipeline ⇒ String
Output only.
-
#update_time ⇒ String
Output only.
-
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via alias (i.e.
projects/project/locations/location/models/model_id@version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`. -
#version_create_time ⇒ String
Output only.
-
#version_description ⇒ String
The description of this version.
-
#version_id ⇒ String
Output only.
-
#version_update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
constructor
A new instance of GoogleCloudAiplatformV1Model.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
Returns a new instance of GoogleCloudAiplatformV1Model.
10078 10079 10080 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10078 def initialize(**args) update!(**args) end |
Instance Attribute Details
#artifact_uri ⇒ String
Immutable. The path to the directory containing the Model artifact and any of
its supporting files. Not present for AutoML Models or Large Models.
Corresponds to the JSON property artifactUri
9866 9867 9868 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9866 def artifact_uri @artifact_uri end |
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions. Some fields in this
message correspond to fields in the Kubernetes Container v1 core
specification.
Corresponds to the JSON property containerSpec
9874 9875 9876 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9874 def container_spec @container_spec end |
#create_time ⇒ String
Output only. Timestamp when this Model was uploaded into Vertex AI.
Corresponds to the JSON property createTime
9879 9880 9881 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9879 def create_time @create_time end |
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only. The pointers to DeployedModels created from this Model. Note that
Model could have been deployed to Endpoints in different Locations.
Corresponds to the JSON property deployedModels
9885 9886 9887 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9885 def deployed_models @deployed_models end |
#description ⇒ String
The description of the Model.
Corresponds to the JSON property description
9890 9891 9892 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9890 def description @description end |
#display_name ⇒ String
Required. The display name of the Model. The name can be up to 128 characters
long and can consist of any UTF-8 characters.
Corresponds to the JSON property displayName
9896 9897 9898 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9896 def display_name @display_name end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
9902 9903 9904 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9902 def encryption_spec @encryption_spec end |
#etag ⇒ String
Used to perform consistent read-modify-write updates. If not set, a blind "
overwrite" update happens.
Corresponds to the JSON property etag
9908 9909 9910 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9908 def etag @etag end |
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
Corresponds to the JSON property explanationSpec
9913 9914 9915 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9913 def explanation_spec @explanation_spec end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models. Label keys and
values can be no longer than 64 characters (Unicode codepoints), can only
contain lowercase letters, numeric characters, underscores and dashes.
International characters are allowed. See https://goo.gl/xmQnxf for more
information and examples of labels.
Corresponds to the JSON property labels
9922 9923 9924 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9922 def labels @labels end |
#metadata ⇒ Object
Immutable. An additional information about the Model; the schema of the
metadata can be found in metadata_schema. Unset if the Model does not have any
additional information.
Corresponds to the JSON property metadata
9929 9930 9931 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9929 def @metadata end |
#metadata_artifact ⇒ String
Output only. The resource name of the Artifact that was created in
MetadataStore when creating the Model. The Artifact resource name pattern is
projects/project/locations/location/metadataStores/metadata_store/
artifacts/artifact`.
Corresponds to the JSON propertymetadataArtifact`
9937 9938 9939 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9937 def @metadata_artifact end |
#metadata_schema_uri ⇒ String
Immutable. Points to a YAML file stored on Google Cloud Storage describing
additional information about the Model, that is specific to it. Unset if the
Model does not have any additional information. The schema is defined as an
OpenAPI 3.0.2 Schema Object. AutoML Models always have this
field populated by Vertex AI, if no additional metadata is needed, this field
is set to an empty string. Note: The URI given on output will be immutable and
probably different, including the URI scheme, than the one given on input. The
output URI will point to a location where the user only has a read access.
Corresponds to the JSON property metadataSchemaUri
9950 9951 9952 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9950 def @metadata_schema_uri end |
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
Corresponds to the JSON property modelSourceInfo
9955 9956 9957 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9955 def model_source_info @model_source_info end |
#name ⇒ String
The resource name of the Model.
Corresponds to the JSON property name
9960 9961 9962 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9960 def name @name end |
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
Corresponds to the JSON property originalModelInfo
9965 9966 9967 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9965 def original_model_info @original_model_info end |
#pipeline_job ⇒ String
Optional. This field is populated if the model is produced by a pipeline job.
Corresponds to the JSON property pipelineJob
9970 9971 9972 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9970 def pipeline_job @pipeline_job end |
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via
PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
Corresponds to the JSON property predictSchemata
9976 9977 9978 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9976 def predict_schemata @predict_schemata end |
#supported_deployment_resources_types ⇒ Array<String>
Output only. When this Model is deployed, its prediction resources are
described by the prediction_resources field of the Endpoint.deployed_models
object. Because not all Models support all resource configuration types, the
configuration types this Model supports are listed here. If no configuration
types are listed, the Model cannot be deployed to an Endpoint and does not
support online predictions (PredictionService.Predict or PredictionService.
Explain). Such a Model can serve predictions by using a BatchPredictionJob, if
it has at least one entry each in supported_input_storage_formats and
supported_output_storage_formats.
Corresponds to the JSON property supportedDeploymentResourcesTypes
9989 9990 9991 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9989 def supported_deployment_resources_types @supported_deployment_resources_types end |
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only. The formats in which this Model may be exported. If empty, this
Model is not available for export.
Corresponds to the JSON property supportedExportFormats
9995 9996 9997 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9995 def supported_export_formats @supported_export_formats end |
#supported_input_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
input_config. If PredictSchemata.instance_schema_uri exists, the instances
should be given as per that schema. The possible formats are: * jsonl The
JSON Lines format, where each instance is a single line. Uses GcsSource. *
csv The CSV format, where each instance is a single comma-separated line. The
first line in the file is the header, containing comma-separated field names.
Uses GcsSource. * tf-record The TFRecord format, where each instance is a
single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar
to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each
instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each
line of the file is the location of an instance to process, uses gcs_source
field of the InputConfig object. If this Model doesn't support any of these
formats it means it cannot be used with a BatchPredictionJob. However, if it
has supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedInputStorageFormats
10014 10015 10016 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10014 def supported_input_storage_formats @supported_input_storage_formats end |
#supported_output_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.
prediction_schema_uri exist, the predictions are returned together with their
instances. In other words, the prediction has the original instance data first,
followed by the actual prediction content (as per the schema). The possible
formats are: * jsonl The JSON Lines format, where each prediction is a
single line. Uses GcsDestination. * csv The CSV format, where each
prediction is a single comma-separated line. The first line in the file is the
header, containing comma-separated field names. Uses GcsDestination. *
bigquery Each prediction is a single row in a BigQuery table, uses
BigQueryDestination . If this Model doesn't support any of these formats it
means it cannot be used with a BatchPredictionJob. However, if it has
supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedOutputStorageFormats
10032 10033 10034 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10032 def supported_output_storage_formats @supported_output_storage_formats end |
#training_pipeline ⇒ String
Output only. The resource name of the TrainingPipeline that uploaded this
Model, if any.
Corresponds to the JSON property trainingPipeline
10038 10039 10040 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10038 def training_pipeline @training_pipeline end |
#update_time ⇒ String
Output only. Timestamp when this Model was most recently updated.
Corresponds to the JSON property updateTime
10043 10044 10045 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10043 def update_time @update_time end |
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via
alias (i.e. projects/project/locations/location/models/model_id@
version_alias`instead of auto-generated version id (i.e.projects/project/
locations/location/models/model_id@version_id). The format is a-z0,126
[a-z0-9] to distinguish from version_id. A default version alias will be
created for the first version of the model, and there must be exactly one
default version alias for a model.
Corresponds to the JSON propertyversionAliases`
10054 10055 10056 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10054 def version_aliases @version_aliases end |
#version_create_time ⇒ String
Output only. Timestamp when this version was created.
Corresponds to the JSON property versionCreateTime
10059 10060 10061 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10059 def version_create_time @version_create_time end |
#version_description ⇒ String
The description of this version.
Corresponds to the JSON property versionDescription
10064 10065 10066 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10064 def version_description @version_description end |
#version_id ⇒ String
Output only. Immutable. The version ID of the model. A new version is
committed when a new model version is uploaded or trained under an existing
model id. It is an auto-incrementing decimal number in string representation.
Corresponds to the JSON property versionId
10071 10072 10073 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10071 def version_id @version_id end |
#version_update_time ⇒ String
Output only. Timestamp when this version was most recently updated.
Corresponds to the JSON property versionUpdateTime
10076 10077 10078 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10076 def version_update_time @version_update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10083 def update!(**args) @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri) @container_spec = args[:container_spec] if args.key?(:container_spec) @create_time = args[:create_time] if args.key?(:create_time) @deployed_models = args[:deployed_models] if args.key?(:deployed_models) @description = args[:description] if args.key?(:description) @display_name = args[:display_name] if args.key?(:display_name) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @etag = args[:etag] if args.key?(:etag) @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec) @labels = args[:labels] if args.key?(:labels) @metadata = args[:metadata] if args.key?(:metadata) @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact) @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri) @model_source_info = args[:model_source_info] if args.key?(:model_source_info) @name = args[:name] if args.key?(:name) @original_model_info = args[:original_model_info] if args.key?(:original_model_info) @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job) @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata) @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types) @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats) @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats) @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats) @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline) @update_time = args[:update_time] if args.key?(:update_time) @version_aliases = args[:version_aliases] if args.key?(:version_aliases) @version_create_time = args[:version_create_time] if args.key?(:version_create_time) @version_description = args[:version_description] if args.key?(:version_description) @version_id = args[:version_id] if args.key?(:version_id) @version_update_time = args[:version_update_time] if args.key?(:version_update_time) end |