Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metrics for forecasting evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
-
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error.
-
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
15550 15551 15552 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15550 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
15507 15508 15509 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15507 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
15513 15514 15515 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15513 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
Corresponds to the JSON property quantileMetrics
15518 15519 15520 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15518 def quantile_metrics @quantile_metrics end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
15524 15525 15526 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15524 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
15529 15530 15531 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15529 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
15535 15536 15537 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15535 def root_mean_squared_log_error @root_mean_squared_log_error end |
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary
when MSPE is negative.
Corresponds to the JSON property rootMeanSquaredPercentageError
15541 15542 15543 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15541 def root_mean_squared_percentage_error @root_mean_squared_percentage_error end |
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error. Does not use weights, this is just what
the metric is called. Undefined if actual values sum to zero. Will be very
large if actual values sum to a very small number.
Corresponds to the JSON property weightedAbsolutePercentageError
15548 15549 15550 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15548 def weighted_absolute_percentage_error @weighted_absolute_percentage_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15555 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error) @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error) end |