Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation.



23414
23415
23416
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23414

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#autoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationAutoTransformation

Training pipeline will infer the proper transformation based on the statistic of dataset. Corresponds to the JSON property auto



23345
23346
23347
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23345

def auto
  @auto
end

#categoricalGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationCategoricalTransformation

Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling, tense, and so on. * Convert the category name to a dictionary lookup index and generate an embedding for each index. * Categories that appear less than 5 times in the training dataset are treated as the "unknown" category. The "unknown" category gets its own special lookup index and resulting embedding. Corresponds to the JSON property categorical



23355
23356
23357
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23355

def categorical
  @categorical
end

#numericGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationNumericTransformation

Training pipeline will perform following transformation functions. * The value converted to float32. * The z_score of the value. * log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * A boolean value that indicates whether the value is valid. Corresponds to the JSON property numeric



23366
23367
23368
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23366

def numeric
  @numeric
end

#repeated_categoricalGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationCategoricalArrayTransformation

Treats the column as categorical array and performs following transformation functions. * For each element in the array, convert the category name to a dictionary lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean. * Empty arrays treated as an embedding of zeroes. Corresponds to the JSON property repeatedCategorical



23375
23376
23377
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23375

def repeated_categorical
  @repeated_categorical
end

#repeated_numericGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationNumericArrayTransformation

Treats the column as numerical array and performs following transformation functions. * All transformations for Numerical types applied to the average of the all elements. * The average of empty arrays is treated as zero. Corresponds to the JSON property repeatedNumeric



23382
23383
23384
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23382

def repeated_numeric
  @repeated_numeric
end

#repeated_textGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationTextArrayTransformation

Treats the column as text array and performs following transformation functions. * Concatenate all text values in the array into a single text value using a space (" ") as a delimiter, and then treat the result as a single text value. Apply the transformations for Text columns. * Empty arrays treated as an empty text. Corresponds to the JSON property repeatedText



23391
23392
23393
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23391

def repeated_text
  @repeated_text
end

#textGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationTextTransformation

Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so on. * Tokenize text to words. Convert each words to a dictionary lookup index and generate an embedding for each index. Combine the embedding of all elements into a single embedding using the mean. * Tokenization is based on unicode script boundaries.

  • Missing values get their own lookup index and resulting embedding. * Stop- words receive no special treatment and are not removed. Corresponds to the JSON property text


23402
23403
23404
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23402

def text
  @text
end

#timestampGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformationTimestampTransformation

Training pipeline will perform following transformation functions. * Apply the transformation functions for Numerical columns. * Determine the year, month, day,and weekday. Treat each value from the * timestamp as a Categorical column.

  • Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed. Corresponds to the JSON property timestamp


23412
23413
23414
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23412

def timestamp
  @timestamp
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23419

def update!(**args)
  @auto = args[:auto] if args.key?(:auto)
  @categorical = args[:categorical] if args.key?(:categorical)
  @numeric = args[:numeric] if args.key?(:numeric)
  @repeated_categorical = args[:repeated_categorical] if args.key?(:repeated_categorical)
  @repeated_numeric = args[:repeated_numeric] if args.key?(:repeated_numeric)
  @repeated_text = args[:repeated_text] if args.key?(:repeated_text)
  @text = args[:text] if args.key?(:text)
  @timestamp = args[:timestamp] if args.key?(:timestamp)
end