Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1TrainingPipeline

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI's Dataset which becomes the training input, upload the Model to Vertex AI, and evaluate the Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1TrainingPipeline

Returns a new instance of GoogleCloudAiplatformV1TrainingPipeline.



28115
28116
28117
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28115

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#create_timeString

Output only. Time when the TrainingPipeline was created. Corresponds to the JSON property createTime

Returns:

  • (String)


28004
28005
28006
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28004

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of this TrainingPipeline. Corresponds to the JSON property displayName

Returns:

  • (String)


28009
28010
28011
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28009

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



28015
28016
28017
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28015

def encryption_spec
  @encryption_spec
end

#end_timeString

Output only. Time when the TrainingPipeline entered any of the following states: PIPELINE_STATE_SUCCEEDED, PIPELINE_STATE_FAILED, PIPELINE_STATE_CANCELLED. Corresponds to the JSON property endTime

Returns:

  • (String)


28022
28023
28024
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28022

def end_time
  @end_time
end

#errorGoogle::Apis::AiplatformV1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



28032
28033
28034
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28032

def error
  @error
end

#input_data_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1InputDataConfig

Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model. Corresponds to the JSON property inputDataConfig



28038
28039
28040
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28038

def input_data_config
  @input_data_config
end

#labelsHash<String,String>

The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


28047
28048
28049
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28047

def labels
  @labels
end

#model_idString

Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are [a-z0-9_-]. The first character cannot be a number or hyphen. Corresponds to the JSON property modelId

Returns:

  • (String)


28055
28056
28057
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28055

def model_id
  @model_id
end

#model_to_uploadGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1Model

A trained machine learning Model. Corresponds to the JSON property modelToUpload



28060
28061
28062
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28060

def model_to_upload
  @model_to_upload
end

#nameString

Output only. Resource name of the TrainingPipeline. Corresponds to the JSON property name

Returns:

  • (String)


28065
28066
28067
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28065

def name
  @name
end

#parent_modelString

Optional. When specify this field, the model_to_upload will not be uploaded as a new model, instead, it will become a new version of this parent_model. Corresponds to the JSON property parentModel

Returns:

  • (String)


28071
28072
28073
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28071

def parent_model
  @parent_model
end

#start_timeString

Output only. Time when the TrainingPipeline for the first time entered the PIPELINE_STATE_RUNNING state. Corresponds to the JSON property startTime

Returns:

  • (String)


28077
28078
28079
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28077

def start_time
  @start_time
end

#stateString

Output only. The detailed state of the pipeline. Corresponds to the JSON property state

Returns:

  • (String)


28082
28083
28084
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28082

def state
  @state
end

#training_task_definitionString

Required. A Google Cloud Storage path to the YAML file that defines the training task which is responsible for producing the model artifact, and may also include additional auxiliary work. The definition files that can be used here are found in gs://google-cloud-aiplatform/schema/trainingjob/definition/. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property trainingTaskDefinition

Returns:

  • (String)


28093
28094
28095
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28093

def training_task_definition
  @training_task_definition
end

#training_task_inputsObject

Required. The training task's parameter(s), as specified in the training_task_definition's inputs. Corresponds to the JSON property trainingTaskInputs

Returns:

  • (Object)


28099
28100
28101
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28099

def training_task_inputs
  @training_task_inputs
end

#training_task_metadataObject

Output only. The metadata information as specified in the training_task_definition's metadata. This metadata is an auxiliary runtime and final information about the training task. While the pipeline is running this information is populated only at a best effort basis. Only present if the pipeline's training_task_definition contains metadata object. Corresponds to the JSON property trainingTaskMetadata

Returns:

  • (Object)


28108
28109
28110
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28108

def 
  @training_task_metadata
end

#update_timeString

Output only. Time when the TrainingPipeline was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


28113
28114
28115
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28113

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 28120

def update!(**args)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @end_time = args[:end_time] if args.key?(:end_time)
  @error = args[:error] if args.key?(:error)
  @input_data_config = args[:input_data_config] if args.key?(:input_data_config)
  @labels = args[:labels] if args.key?(:labels)
  @model_id = args[:model_id] if args.key?(:model_id)
  @model_to_upload = args[:model_to_upload] if args.key?(:model_to_upload)
  @name = args[:name] if args.key?(:name)
  @parent_model = args[:parent_model] if args.key?(:parent_model)
  @start_time = args[:start_time] if args.key?(:start_time)
  @state = args[:state] if args.key?(:state)
  @training_task_definition = args[:training_task_definition] if args.key?(:training_task_definition)
  @training_task_inputs = args[:training_task_inputs] if args.key?(:training_task_inputs)
  @training_task_metadata = args[:training_task_metadata] if args.key?(:training_task_metadata)
  @update_time = args[:update_time] if args.key?(:update_time)
end