Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Model evaluation metrics for text sentiment problems.
Instance Attribute Summary collapse
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#linear_kappa ⇒ Float
Linear weighted kappa.
-
#mean_absolute_error ⇒ Float
Mean absolute error.
-
#mean_squared_error ⇒ Float
Mean squared error.
-
#precision ⇒ Float
Precision.
-
#quadratic_kappa ⇒ Float
Quadratic weighted kappa.
-
#recall ⇒ Float
Recall.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsTextSentimentEvaluationMetrics.
20213 20214 20215 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20213 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation. Only set for ModelEvaluations, not for
ModelEvaluationSlices.
Corresponds to the JSON property confusionMatrix
20172 20173 20174 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20172 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision.
Corresponds to the JSON property f1Score
20177 20178 20179 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20177 def f1_score @f1_score end |
#linear_kappa ⇒ Float
Linear weighted kappa. Only set for ModelEvaluations, not for
ModelEvaluationSlices.
Corresponds to the JSON property linearKappa
20183 20184 20185 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20183 def linear_kappa @linear_kappa end |
#mean_absolute_error ⇒ Float
Mean absolute error. Only set for ModelEvaluations, not for
ModelEvaluationSlices.
Corresponds to the JSON property meanAbsoluteError
20189 20190 20191 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20189 def mean_absolute_error @mean_absolute_error end |
#mean_squared_error ⇒ Float
Mean squared error. Only set for ModelEvaluations, not for
ModelEvaluationSlices.
Corresponds to the JSON property meanSquaredError
20195 20196 20197 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20195 def mean_squared_error @mean_squared_error end |
#precision ⇒ Float
Precision.
Corresponds to the JSON property precision
20200 20201 20202 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20200 def precision @precision end |
#quadratic_kappa ⇒ Float
Quadratic weighted kappa. Only set for ModelEvaluations, not for
ModelEvaluationSlices.
Corresponds to the JSON property quadraticKappa
20206 20207 20208 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20206 def quadratic_kappa @quadratic_kappa end |
#recall ⇒ Float
Recall.
Corresponds to the JSON property recall
20211 20212 20213 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20211 def recall @recall end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20218 def update!(**args) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @linear_kappa = args[:linear_kappa] if args.key?(:linear_kappa) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_squared_error = args[:mean_squared_error] if args.key?(:mean_squared_error) @precision = args[:precision] if args.key?(:precision) @quadratic_kappa = args[:quadratic_kappa] if args.key?(:quadratic_kappa) @recall = args[:recall] if args.key?(:recall) end |