Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Metrics for forecasting evaluation results.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics.



15500
15501
15502
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15500

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#mean_absolute_errorFloat

Mean Absolute Error (MAE). Corresponds to the JSON property meanAbsoluteError

Returns:

  • (Float)


15457
15458
15459
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15457

def mean_absolute_error
  @mean_absolute_error
end

#mean_absolute_percentage_errorFloat

Mean absolute percentage error. Infinity when there are zeros in the ground truth. Corresponds to the JSON property meanAbsolutePercentageError

Returns:

  • (Float)


15463
15464
15465
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15463

def mean_absolute_percentage_error
  @mean_absolute_percentage_error
end

#quantile_metricsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>

The quantile metrics entries for each quantile. Corresponds to the JSON property quantileMetrics



15468
15469
15470
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15468

def quantile_metrics
  @quantile_metrics
end

#r_squaredFloat

Coefficient of determination as Pearson correlation coefficient. Undefined when ground truth or predictions are constant or near constant. Corresponds to the JSON property rSquared

Returns:

  • (Float)


15474
15475
15476
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15474

def r_squared
  @r_squared
end

#root_mean_squared_errorFloat

Root Mean Squared Error (RMSE). Corresponds to the JSON property rootMeanSquaredError

Returns:

  • (Float)


15479
15480
15481
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15479

def root_mean_squared_error
  @root_mean_squared_error
end

#root_mean_squared_log_errorFloat

Root mean squared log error. Undefined when there are negative ground truth values or predictions. Corresponds to the JSON property rootMeanSquaredLogError

Returns:

  • (Float)


15485
15486
15487
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15485

def root_mean_squared_log_error
  @root_mean_squared_log_error
end

#root_mean_squared_percentage_errorFloat

Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary when MSPE is negative. Corresponds to the JSON property rootMeanSquaredPercentageError

Returns:

  • (Float)


15491
15492
15493
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15491

def root_mean_squared_percentage_error
  @root_mean_squared_percentage_error
end

#weighted_absolute_percentage_errorFloat

Weighted Absolute Percentage Error. Does not use weights, this is just what the metric is called. Undefined if actual values sum to zero. Will be very large if actual values sum to a very small number. Corresponds to the JSON property weightedAbsolutePercentageError

Returns:

  • (Float)


15498
15499
15500
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15498

def weighted_absolute_percentage_error
  @weighted_absolute_percentage_error
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15505

def update!(**args)
  @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error)
  @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error)
  @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics)
  @r_squared = args[:r_squared] if args.key?(:r_squared)
  @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error)
  @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error)
  @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error)
  @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error)
end