Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.
Instance Attribute Summary collapse
-
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse representation.
-
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor.
-
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor.
-
#encoding ⇒ String
Defines how the feature is encoded into the input tensor.
-
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value.
-
#group_name ⇒ String
Name of the group that the input belongs to.
-
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor.
-
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor.
-
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature.
-
#input_tensor_name ⇒ String
Name of the input tensor for this feature.
-
#modality ⇒ String
Modality of the feature.
-
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
constructor
A new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Returns a new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
7010 7011 7012 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 7010 def initialize(**args) update!(**args) end |
Instance Attribute Details
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse
representation. Refer to Tensorflow documentation for more details: https://
www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property denseShapeTensorName
6923 6924 6925 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6923 def dense_shape_tensor_name @dense_shape_tensor_name end |
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor. The shape of each baseline should
match the shape of the encoded tensor. If a scalar is provided, Vertex AI
broadcasts to the same shape as the encoded tensor.
Corresponds to the JSON property encodedBaselines
6930 6931 6932 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6930 def encoded_baselines @encoded_baselines end |
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor. Must be provided if
choosing Integrated Gradients attribution or XRAI attribution and the input
tensor is not differentiable. An encoded tensor is generated if the input
tensor is encoded by a lookup table.
Corresponds to the JSON property encodedTensorName
6938 6939 6940 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6938 def encoded_tensor_name @encoded_tensor_name end |
#encoding ⇒ String
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
Corresponds to the JSON property encoding
6943 6944 6945 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6943 def encoding @encoding end |
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value. Provides numeric information about
the feature, such as its range (min, max). If the feature has been pre-
processed, for example with z-scoring, then it provides information about how
to recover the original feature. For example, if the input feature is an image
and it has been pre-processed to obtain 0-mean and stddev = 1 values, then
original_mean, and original_stddev refer to the mean and stddev of the
original feature (e.g. image tensor) from which input feature (with mean = 0
and stddev = 1) was obtained.
Corresponds to the JSON property featureValueDomain
6955 6956 6957 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6955 def feature_value_domain @feature_value_domain end |
#group_name ⇒ String
Name of the group that the input belongs to. Features with the same group name
will be treated as one feature when computing attributions. Features grouped
together can have different shapes in value. If provided, there will be one
single attribution generated in Attribution.feature_attributions, keyed by the
group name.
Corresponds to the JSON property groupName
6964 6965 6966 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6964 def group_name @group_name end |
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor. Required when the
input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE,
INDICATOR.
Corresponds to the JSON property indexFeatureMapping
6971 6972 6973 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6971 def index_feature_mapping @index_feature_mapping end |
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor. Required when the input
tensor is a sparse representation. Refer to Tensorflow documentation for more
details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property indicesTensorName
6978 6979 6980 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6978 def indices_tensor_name @indices_tensor_name end |
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature. If no baseline is specified, Vertex AI
chooses the baseline for this feature. If multiple baselines are specified,
Vertex AI returns the average attributions across them in Attribution.
feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.
x), the shape of each baseline must match the shape of the input tensor. If a
scalar is provided, we broadcast to the same shape as the input tensor. For
custom images, the element of the baselines must be in the same format as the
feature's input in the instance[]. The schema of any single instance may be
specified via Endpoint's DeployedModels' Model's PredictSchemata's
instance_schema_uri.
Corresponds to the JSON property inputBaselines
6992 6993 6994 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6992 def input_baselines @input_baselines end |
#input_tensor_name ⇒ String
Name of the input tensor for this feature. Required and is only applicable to
Vertex AI-provided images for Tensorflow.
Corresponds to the JSON property inputTensorName
6998 6999 7000 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6998 def input_tensor_name @input_tensor_name end |
#modality ⇒ String
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
Corresponds to the JSON property modality
7003 7004 7005 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 7003 def modality @modality end |
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Corresponds to the JSON property visualization
7008 7009 7010 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 7008 def visualization @visualization end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 7015 def update!(**args) @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name) @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines) @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name) @encoding = args[:encoding] if args.key?(:encoding) @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain) @group_name = args[:group_name] if args.key?(:group_name) @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping) @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name) @input_baselines = args[:input_baselines] if args.key?(:input_baselines) @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name) @modality = args[:modality] if args.key?(:modality) @visualization = args[:visualization] if args.key?(:visualization) end |