Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb more...
Overview
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.
Instance Attribute Summary collapse
-
#args ⇒ Array<String>
Immutable.
-
#command ⇒ Array<String>
Immutable.
-
#deployment_timeout ⇒ String
Immutable.
-
#env ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EnvVar>
Immutable.
-
#grpc_ports ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Port>
Immutable.
-
#health_probe ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Probe
Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.
-
#health_route ⇒ String
Immutable.
-
#image_uri ⇒ String
Required.
-
#ports ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Port>
Immutable.
-
#predict_route ⇒ String
Immutable.
-
#shared_memory_size_mb ⇒ Fixnum
Immutable.
-
#startup_probe ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Probe
Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelContainerSpec
constructor
A new instance of GoogleCloudAiplatformV1ModelContainerSpec.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelContainerSpec
Returns a new instance of GoogleCloudAiplatformV1ModelContainerSpec.
14380 14381 14382 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14380 def initialize(**args) update!(**args) end |
Instance Attribute Details
#args ⇒ Array<String>
Immutable. Specifies arguments for the command that runs when the container
starts. This overrides the container's CMD
. Specify this field as an array of executable and
arguments, similar to a Docker CMD
's "default parameters" form. If you don't
specify this field but do specify the command field, then the command from the
command
field runs without any additional arguments. See the Kubernetes
documentation about how the command
and args
fields interact with a
container's ENTRYPOINT
and CMD
. If you don't
specify this field and don't specify the command
field, then the container's
ENTRYPOINT
and CMD
determine what runs based on their default behavior. See the Docker
documentation about how CMD
and ENTRYPOINT
interact. In
this field, you can reference environment variables set by Vertex AI and environment variables set in the env field. You cannot
reference environment variables set in the Docker image. In order for
environment variables to be expanded, reference them by using the following
syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion,
which does not use parentheses. If a variable cannot be resolved, the
reference in the input string is used unchanged. To avoid variable expansion,
you can escape this syntax with $$
; for example: $$(VARIABLE_NAME) This
field corresponds to the args
field of the Kubernetes Containers v1 core
API.
Corresponds to the JSON property args
14223 14224 14225 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14223 def args @args end |
#command ⇒ Array<String>
Immutable. Specifies the command that runs when the container starts. This
overrides the container's ENTRYPOINT. Specify this field as an array of executable
and arguments, similar to a Docker ENTRYPOINT
's "exec" form, not its "shell"
form. If you do not specify this field, then the container's ENTRYPOINT
runs,
in conjunction with the args field or the container's CMD
, if either exists. If this field is
not specified and the container does not have an ENTRYPOINT
, then refer to
the Docker documentation about how CMD
and ENTRYPOINT
interact. If you specify this field, then you can also specify the args
field to provide additional arguments for this command. However, if you
specify this field, then the container's CMD
is ignored. See the Kubernetes
documentation about how the command
and args
fields interact with a
container's ENTRYPOINT
and CMD
. In this field, you
can reference environment variables set by Vertex AI
and environment variables set in the env field. You cannot reference
environment variables set in the Docker image. In order for environment
variables to be expanded, reference them by using the following syntax: $(
VARIABLE_NAME) Note that this differs from Bash variable expansion, which does
not use parentheses. If a variable cannot be resolved, the reference in the
input string is used unchanged. To avoid variable expansion, you can escape
this syntax with $$
; for example: $$(VARIABLE_NAME) This field corresponds
to the command
field of the Kubernetes Containers v1 core API
.
Corresponds to the JSON property command
14255 14256 14257 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14255 def command @command end |
#deployment_timeout ⇒ String
Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
Corresponds to the JSON property deploymentTimeout
14260 14261 14262 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14260 def deployment_timeout @deployment_timeout end |
#env ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EnvVar>
Immutable. List of environment variables to set in the container. After the
container starts running, code running in the container can read these
environment variables. Additionally, the command and args fields can reference
these variables. Later entries in this list can also reference earlier entries.
For example, the following example sets the variable VAR_2
to have the
value foo bar
: json [ ` "name": "VAR_1", "value": "foo" `, ` "name": "
VAR_2", "value": "$(VAR_1) bar" ` ]
If you switch the order of the
variables in the example, then the expansion does not occur. This field
corresponds to the env
field of the Kubernetes Containers v1 core API.
Corresponds to the JSON property env
14275 14276 14277 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14275 def env @env end |
#grpc_ports ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Port>
Immutable. List of ports to expose from the container. Vertex AI sends gRPC
prediction requests that it receives to the first port on this list. Vertex AI
also sends liveness and health checks to this port. If you do not specify this
field, gRPC requests to the container will be disabled. Vertex AI does not use
ports other than the first one listed. This field corresponds to the ports
field of the Kubernetes Containers v1 core API.
Corresponds to the JSON property grpcPorts
14285 14286 14287 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14285 def grpc_ports @grpc_ports end |
#health_probe ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Probe
Probe describes a health check to be performed against a container to
determine whether it is alive or ready to receive traffic.
Corresponds to the JSON property healthProbe
14291 14292 14293 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14291 def health_probe @health_probe end |
#health_route ⇒ String
Immutable. HTTP path on the container to send health checks to. Vertex AI
intermittently sends GET requests to this path on the container's IP address
and port to check that the container is healthy. Read more about health
checks. For example, if you set this field to /bar
, then
Vertex AI intermittently sends a GET request to the /bar
path on the port of
your container specified by the first value of this ModelContainerSpec
's
ports field. If you don't specify this field, it defaults to the following
value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/
deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are
replaced as follows: * ENDPOINT: The last segment (following endpoints/
)of
the Endpoint.name][] field of the Endpoint where this Model has been deployed.
(Vertex AI makes this value available to your container code as the
AIP_ENDPOINT_ID
environment variable.) * DEPLOYED_MODEL:
DeployedModel.id of the DeployedModel
. (Vertex AI makes this value available
to your container code as the AIP_DEPLOYED_MODEL_ID
environment variable.)
Corresponds to the JSON property healthRoute
14314 14315 14316 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14314 def health_route @health_route end |
#image_uri ⇒ String
Required. Immutable. URI of the Docker image to be used as the custom
container for serving predictions. This URI must identify an image in Artifact
Registry or Container Registry. Learn more about the container publishing
requirements, including permissions requirements for the
Vertex AI Service Agent. The container image is ingested upon ModelService.
UploadModel, stored internally, and this original path is afterwards not used.
To learn about the requirements for the Docker image itself, see Custom
container requirements. You can use the URI to one of Vertex AI's
pre-built container images for prediction in this field.
Corresponds to the JSON property imageUri
14330 14331 14332 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14330 def image_uri @image_uri end |
#ports ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Port>
Immutable. List of ports to expose from the container. Vertex AI sends any
prediction requests that it receives to the first port on this list. Vertex AI
also sends liveness and health checks to this port. If you
do not specify this field, it defaults to following value: json [ ` "
containerPort": 8080 ` ]
Vertex AI does not use ports other than the first
one listed. This field corresponds to the ports
field of the Kubernetes
Containers v1 core API.
Corresponds to the JSON property ports
14343 14344 14345 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14343 def ports @ports end |
#predict_route ⇒ String
Immutable. HTTP path on the container to send prediction requests to. Vertex
AI forwards requests sent using projects.locations.endpoints.predict to this
path on the container's IP address and port. Vertex AI then returns the
container's response in the API response. For example, if you set this field
to /foo
, then when Vertex AI receives a prediction request, it forwards the
request body in a POST request to the /foo
path on the port of your
container specified by the first value of this ModelContainerSpec
's ports
field. If you don't specify this field, it defaults to the following value
when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/
deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are
replaced as follows: * ENDPOINT: The last segment (following endpoints/
)of
the Endpoint.name][] field of the Endpoint where this Model has been deployed.
(Vertex AI makes this value available to your container code as the
AIP_ENDPOINT_ID
environment variable.) * DEPLOYED_MODEL:
DeployedModel.id of the DeployedModel
. (Vertex AI makes this value available
to your container code as the AIP_DEPLOYED_MODEL_ID
environment variable.)
Corresponds to the JSON property predictRoute
14366 14367 14368 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14366 def predict_route @predict_route end |
#shared_memory_size_mb ⇒ Fixnum
Immutable. The amount of the VM memory to reserve as the shared memory for the
model in megabytes.
Corresponds to the JSON property sharedMemorySizeMb
14372 14373 14374 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14372 def shared_memory_size_mb @shared_memory_size_mb end |
#startup_probe ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Probe
Probe describes a health check to be performed against a container to
determine whether it is alive or ready to receive traffic.
Corresponds to the JSON property startupProbe
14378 14379 14380 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14378 def startup_probe @startup_probe end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14385 def update!(**args) @args = args[:args] if args.key?(:args) @command = args[:command] if args.key?(:command) @deployment_timeout = args[:deployment_timeout] if args.key?(:deployment_timeout) @env = args[:env] if args.key?(:env) @grpc_ports = args[:grpc_ports] if args.key?(:grpc_ports) @health_probe = args[:health_probe] if args.key?(:health_probe) @health_route = args[:health_route] if args.key?(:health_route) @image_uri = args[:image_uri] if args.key?(:image_uri) @ports = args[:ports] if args.key?(:ports) @predict_route = args[:predict_route] if args.key?(:predict_route) @shared_memory_size_mb = args[:shared_memory_size_mb] if args.key?(:shared_memory_size_mb) @startup_probe = args[:startup_probe] if args.key?(:startup_probe) end |