Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation.



25002
25003
25004
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25002

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#autoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationAutoTransformation

Training pipeline will infer the proper transformation based on the statistic of dataset. Corresponds to the JSON property auto



24961
24962
24963
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 24961

def auto
  @auto
end

#categoricalGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationCategoricalTransformation

Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling, tense, and so on. * Convert the category name to a dictionary lookup index and generate an embedding for each index. * Categories that appear less than 5 times in the training dataset are treated as the "unknown" category. The "unknown" category gets its own special lookup index and resulting embedding. Corresponds to the JSON property categorical



24971
24972
24973
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 24971

def categorical
  @categorical
end

#numericGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationNumericTransformation

Training pipeline will perform following transformation functions. * The value converted to float32. * The z_score of the value. * log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * A boolean value that indicates whether the value is valid. Corresponds to the JSON property numeric



24982
24983
24984
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 24982

def numeric
  @numeric
end

#textGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTextTransformation

Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so on. * Convert the category name to a dictionary lookup index and generate an embedding for each index. Corresponds to the JSON property text



24990
24991
24992
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 24990

def text
  @text
end

#timestampGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTimestampTransformation

Training pipeline will perform following transformation functions. * Apply the transformation functions for Numerical columns. * Determine the year, month, day,and weekday. Treat each value from the timestamp as a Categorical column. * Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed. Corresponds to the JSON property timestamp



25000
25001
25002
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25000

def timestamp
  @timestamp
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25007
25008
25009
25010
25011
25012
25013
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25007

def update!(**args)
  @auto = args[:auto] if args.key?(:auto)
  @categorical = args[:categorical] if args.key?(:categorical)
  @numeric = args[:numeric] if args.key?(:numeric)
  @text = args[:text] if args.key?(:text)
  @timestamp = args[:timestamp] if args.key?(:timestamp)
end