Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.



25635
25636
25637
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25635

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the Tables training pipeline. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


25547
25548
25549
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25547

def additional_experiments
  @additional_experiments
end

#disable_early_stoppingBoolean Also known as: disable_early_stopping?

Use the entire training budget. This disables the early stopping feature. By default, the early stopping feature is enabled, which means that AutoML Tables might stop training before the entire training budget has been used. Corresponds to the JSON property disableEarlyStopping

Returns:

  • (Boolean)


25554
25555
25556
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25554

def disable_early_stopping
  @disable_early_stopping
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



25560
25561
25562
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25560

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that maximizes/minimizes the value of the objective function over the validation set. The supported optimization objectives depend on the prediction type. If the field is not set, a default objective function is used. classification (binary): "maximize-au-roc" (default) - Maximize the area under the receiver operating characteristic (ROC) curve. "minimize-log-loss" - Minimize log loss. "maximize-au-prc" - Maximize the area under the precision- recall curve. "maximize-precision-at-recall" - Maximize precision for a specified recall value. "maximize-recall-at-precision" - Maximize recall for a specified precision value. classification (multi-class): "minimize-log-loss" ( default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error ( MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE). Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


25577
25578
25579
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25577

def optimization_objective
  @optimization_objective
end

#optimization_objective_precision_valueFloat

Required when optimization_objective is "maximize-recall-at-precision". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectivePrecisionValue

Returns:

  • (Float)


25583
25584
25585
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25583

def optimization_objective_precision_value
  @optimization_objective_precision_value
end

#optimization_objective_recall_valueFloat

Required when optimization_objective is "maximize-precision-at-recall". Must be between 0 and 1, inclusive. Corresponds to the JSON property optimizationObjectiveRecallValue

Returns:

  • (Float)


25589
25590
25591
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25589

def optimization_objective_recall_value
  @optimization_objective_recall_value
end

#prediction_typeString

The type of prediction the Model is to produce. "classification" - Predict one out of multiple target values is picked for each row. "regression" - Predict a value based on its relation to other values. This type is available only to columns that contain semantically numeric values, i.e. integers or floating point number, even if stored as e.g. strings. Corresponds to the JSON property predictionType

Returns:

  • (String)


25598
25599
25600
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25598

def prediction_type
  @prediction_type
end

#target_columnString

The column name of the target column that the model is to predict. Corresponds to the JSON property targetColumn

Returns:

  • (String)


25603
25604
25605
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25603

def target_column
  @target_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


25616
25617
25618
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25616

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



25624
25625
25626
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25624

def transformations
  @transformations
end

#weight_column_nameString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumnName

Returns:

  • (String)


25633
25634
25635
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25633

def weight_column_name
  @weight_column_name
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25640

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value)
  @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value)
  @prediction_type = args[:prediction_type] if args.key?(:prediction_type)
  @target_column = args[:target_column] if args.key?(:target_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name)
end