Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
-
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
-
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for model training and prediction respectively.
-
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsGranularity
A duration of time expressed in time granularity units.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target are returned.
-
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies.
-
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss
optimization_objective
. -
#target_column ⇒ String
The name of the column that the Model is to predict values for.
-
#time_column ⇒ String
The name of the column that identifies time order in the time series.
-
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns.
-
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation>
Each transformation will apply transform function to given input column.
-
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested.
-
#validation_options ⇒ String
Validation options for the data validation component.
-
#weight_column ⇒ String
Column name that should be used as the weight column.
-
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time series training.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs.
26677 26678 26679 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26677 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
Corresponds to the JSON property additionalExperiments
26526 26527 26528 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26526 def additional_experiments @additional_experiments end |
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
These columns contain information for the given entity (identified by the
time_series_identifier_column column) that is known at forecast. For example,
predicted weather for a specific day.
Corresponds to the JSON property availableAtForecastColumns
26534 26535 26536 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26534 def available_at_forecast_columns @available_at_forecast_columns end |
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for
model training and prediction respectively. Expressed in number of units
defined by the data_granularity
field.
Corresponds to the JSON property contextWindow
26541 26542 26543 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26541 def context_window @context_window end |
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsGranularity
A duration of time expressed in time granularity units.
Corresponds to the JSON property dataGranularity
26546 26547 26548 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26546 def data_granularity @data_granularity end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
26551 26552 26553 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26551 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target
are returned. Expressed in number of units defined by the data_granularity
field.
Corresponds to the JSON property forecastHorizon
26558 26559 26560 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26558 def forecast_horizon @forecast_horizon end |
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and
parameters for hierarchical forecasting strategies.
Corresponds to the JSON property hierarchyConfig
26564 26565 26566 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26564 def hierarchy_config @hierarchy_config end |
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in
modeling by adding holiday categorical array feature that include all holidays
matching the date. This option only allowed when data_granularity is day. By
default, holiday effect modeling is disabled. To turn it on, specify the
holiday region using this option.
Corresponds to the JSON property holidayRegions
26573 26574 26575 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26573 def holiday_regions @holiday_regions end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that optimizes the value of the objective function over the
validation set. The supported optimization objectives: * "minimize-rmse" (
default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" -
Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-
squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared
percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of
weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "
minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined
in quantiles
. * "minimize-mape" - Minimize the mean absolute percentage
error.
Corresponds to the JSON property optimizationObjective
26588 26589 26590 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26588 def optimization_objective @optimization_objective end |
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss optimization_objective
. Up to 5
quantiles are allowed of values between 0 and 1, exclusive. Required if the
value of optimization_objective is minimize-quantile-loss. Represents the
percent quantiles to use for that objective. Quantiles must be unique.
Corresponds to the JSON property quantiles
26596 26597 26598 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26596 def quantiles @quantiles end |
#target_column ⇒ String
The name of the column that the Model is to predict values for. This column
must be unavailable at forecast.
Corresponds to the JSON property targetColumn
26602 26603 26604 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26602 def target_column @target_column end |
#time_column ⇒ String
The name of the column that identifies time order in the time series. This
column must be available at forecast.
Corresponds to the JSON property timeColumn
26608 26609 26610 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26608 def time_column @time_column end |
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns. The value of these
columns does not vary as a function of time. For example, store ID or item
color.
Corresponds to the JSON property timeSeriesAttributeColumns
26615 26616 26617 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26615 def time_series_attribute_columns @time_series_attribute_columns end |
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
Corresponds to the JSON property timeSeriesIdentifierColumn
26620 26621 26622 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26620 def time_series_identifier_column @time_series_identifier_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
26633 26634 26635 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26633 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
26641 26642 26643 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26641 def transformations @transformations end |
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested. This
column contains information for the given entity (identified by the
time_series_identifier_column) that is unknown before the forecast For example,
actual weather on a given day.
Corresponds to the JSON property unavailableAtForecastColumns
26649 26650 26651 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26649 def unavailable_at_forecast_columns @unavailable_at_forecast_columns end |
#validation_options ⇒ String
Validation options for the data validation component. The available options
are: * "fail-pipeline" - default, will validate against the validation and
fail the pipeline if it fails. * "ignore-validation" - ignore the results of
the validation and continue
Corresponds to the JSON property validationOptions
26657 26658 26659 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26657 def @validation_options end |
#weight_column ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1. This column must be available at forecast.
Corresponds to the JSON property weightColumn
26666 26667 26668 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26666 def weight_column @weight_column end |
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time
series training. A window is a series of rows that comprise the context up to
the time of prediction, and the horizon following. The corresponding row for
each window marks the start of the forecast horizon. Each window is used as an
input example for training/evaluation.
Corresponds to the JSON property windowConfig
26675 26676 26677 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26675 def window_config @window_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 26682 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns) @context_window = args[:context_window] if args.key?(:context_window) @data_granularity = args[:data_granularity] if args.key?(:data_granularity) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon) @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config) @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @quantiles = args[:quantiles] if args.key?(:quantiles) @target_column = args[:target_column] if args.key?(:target_column) @time_column = args[:time_column] if args.key?(:time_column) @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns) @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns) @validation_options = args[:validation_options] if args.key?(:validation_options) @weight_column = args[:weight_column] if args.key?(:weight_column) @window_config = args[:window_config] if args.key?(:window_config) end |