Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1IndexDatapoint.



11400
11401
11402
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11400

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



11366
11367
11368
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11366

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


11371
11372
11373
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11371

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


11377
11378
11379
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11377

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



11384
11385
11386
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11384

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



11392
11393
11394
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11392

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



11398
11399
11400
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11398

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11405
11406
11407
11408
11409
11410
11411
11412
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11405

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end