Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Metrics for general pairwise text generation evaluation results.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics

Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsPairwiseTextGenerationEvaluationMetrics.



22660
22661
22662
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22660

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#accuracyFloat

Fraction of cases where the autorater agreed with the human raters. Corresponds to the JSON property accuracy

Returns:

  • (Float)


22588
22589
22590
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22588

def accuracy
  @accuracy
end

#baseline_model_win_rateFloat

Percentage of time the autorater decided the baseline model had the better response. Corresponds to the JSON property baselineModelWinRate

Returns:

  • (Float)


22594
22595
22596
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22594

def baseline_model_win_rate
  @baseline_model_win_rate
end

#cohens_kappaFloat

A measurement of agreement between the autorater and human raters that takes the likelihood of random agreement into account. Corresponds to the JSON property cohensKappa

Returns:

  • (Float)


22600
22601
22602
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22600

def cohens_kappa
  @cohens_kappa
end

#f1_scoreFloat

Harmonic mean of precision and recall. Corresponds to the JSON property f1Score

Returns:

  • (Float)


22605
22606
22607
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22605

def f1_score
  @f1_score
end

#false_negative_countFixnum

Number of examples where the autorater chose the baseline model, but humans preferred the model. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


22611
22612
22613
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22611

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

Number of examples where the autorater chose the model, but humans preferred the baseline model. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


22617
22618
22619
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22617

def false_positive_count
  @false_positive_count
end

#human_preference_baseline_model_win_rateFloat

Percentage of time humans decided the baseline model had the better response. Corresponds to the JSON property humanPreferenceBaselineModelWinRate

Returns:

  • (Float)


22622
22623
22624
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22622

def human_preference_baseline_model_win_rate
  @human_preference_baseline_model_win_rate
end

#human_preference_model_win_rateFloat

Percentage of time humans decided the model had the better response. Corresponds to the JSON property humanPreferenceModelWinRate

Returns:

  • (Float)


22627
22628
22629
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22627

def human_preference_model_win_rate
  @human_preference_model_win_rate
end

#model_win_rateFloat

Percentage of time the autorater decided the model had the better response. Corresponds to the JSON property modelWinRate

Returns:

  • (Float)


22632
22633
22634
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22632

def model_win_rate
  @model_win_rate
end

#precisionFloat

Fraction of cases where the autorater and humans thought the model had a better response out of all cases where the autorater thought the model had a better response. True positive divided by all positive. Corresponds to the JSON property precision

Returns:

  • (Float)


22639
22640
22641
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22639

def precision
  @precision
end

#recallFloat

Fraction of cases where the autorater and humans thought the model had a better response out of all cases where the humans thought the model had a better response. Corresponds to the JSON property recall

Returns:

  • (Float)


22646
22647
22648
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22646

def recall
  @recall
end

#true_negative_countFixnum

Number of examples where both the autorater and humans decided that the model had the worse response. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


22652
22653
22654
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22652

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

Number of examples where both the autorater and humans decided that the model had the better response. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


22658
22659
22660
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22658

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22665

def update!(**args)
  @accuracy = args[:accuracy] if args.key?(:accuracy)
  @baseline_model_win_rate = args[:baseline_model_win_rate] if args.key?(:baseline_model_win_rate)
  @cohens_kappa = args[:cohens_kappa] if args.key?(:cohens_kappa)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @human_preference_baseline_model_win_rate = args[:human_preference_baseline_model_win_rate] if args.key?(:human_preference_baseline_model_win_rate)
  @human_preference_model_win_rate = args[:human_preference_model_win_rate] if args.key?(:human_preference_model_win_rate)
  @model_win_rate = args[:model_win_rate] if args.key?(:model_win_rate)
  @precision = args[:precision] if args.key?(:precision)
  @recall = args[:recall] if args.key?(:recall)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end