Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1IndexDatapoint.



11560
11561
11562
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11560

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



11526
11527
11528
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11526

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


11531
11532
11533
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11531

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


11537
11538
11539
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11537

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



11544
11545
11546
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11544

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



11552
11553
11554
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11552

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



11558
11559
11560
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11558

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11565
11566
11567
11568
11569
11570
11571
11572
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11565

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end