Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation.



25600
25601
25602
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25600

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#autoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationAutoTransformation

Training pipeline will infer the proper transformation based on the statistic of dataset. Corresponds to the JSON property auto



25559
25560
25561
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25559

def auto
  @auto
end

#categoricalGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationCategoricalTransformation

Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling, tense, and so on. * Convert the category name to a dictionary lookup index and generate an embedding for each index. * Categories that appear less than 5 times in the training dataset are treated as the "unknown" category. The "unknown" category gets its own special lookup index and resulting embedding. Corresponds to the JSON property categorical



25569
25570
25571
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25569

def categorical
  @categorical
end

#numericGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationNumericTransformation

Training pipeline will perform following transformation functions. * The value converted to float32. * The z_score of the value. * log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * z_score of log(value+1) when the value is greater than or equal to 0. Otherwise, this transformation is not applied and the value is considered a missing value. * A boolean value that indicates whether the value is valid. Corresponds to the JSON property numeric



25580
25581
25582
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25580

def numeric
  @numeric
end

#textGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTextTransformation

Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so on. * Convert the category name to a dictionary lookup index and generate an embedding for each index. Corresponds to the JSON property text



25588
25589
25590
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25588

def text
  @text
end

#timestampGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformationTimestampTransformation

Training pipeline will perform following transformation functions. * Apply the transformation functions for Numerical columns. * Determine the year, month, day,and weekday. Treat each value from the timestamp as a Categorical column. * Invalid numerical values (for example, values that fall outside of a typical timestamp range, or are extreme values) receive no special treatment and are not removed. Corresponds to the JSON property timestamp



25598
25599
25600
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25598

def timestamp
  @timestamp
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25605
25606
25607
25608
25609
25610
25611
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25605

def update!(**args)
  @auto = args[:auto] if args.key?(:auto)
  @categorical = args[:categorical] if args.key?(:categorical)
  @numeric = args[:numeric] if args.key?(:numeric)
  @text = args[:text] if args.key?(:text)
  @timestamp = args[:timestamp] if args.key?(:timestamp)
end