Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A trained machine learning Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1Model

Returns a new instance of GoogleCloudAiplatformV1Model.



14502
14503
14504
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14502

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#artifact_uriString

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models. Corresponds to the JSON property artifactUri

Returns:

  • (String)


14267
14268
14269
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14267

def artifact_uri
  @artifact_uri
end

#base_model_sourceGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelBaseModelSource

User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. Corresponds to the JSON property baseModelSource



14273
14274
14275
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14273

def base_model_source
  @base_model_source
end

#container_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec

Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification. Corresponds to the JSON property containerSpec



14281
14282
14283
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14281

def container_spec
  @container_spec
end

#create_timeString

Output only. Timestamp when this Model was uploaded into Vertex AI. Corresponds to the JSON property createTime

Returns:

  • (String)


14286
14287
14288
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14286

def create_time
  @create_time
end

#data_statsGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDataStats

Stats of data used for train or evaluate the Model. Corresponds to the JSON property dataStats



14291
14292
14293
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14291

def data_stats
  @data_stats
end

#deployed_modelsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations. Corresponds to the JSON property deployedModels



14297
14298
14299
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14297

def deployed_models
  @deployed_models
end

#descriptionString

The description of the Model. Corresponds to the JSON property description

Returns:

  • (String)


14302
14303
14304
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14302

def description
  @description
end

#display_nameString

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. Corresponds to the JSON property displayName

Returns:

  • (String)


14308
14309
14310
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14308

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



14314
14315
14316
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14314

def encryption_spec
  @encryption_spec
end

#etagString

Used to perform consistent read-modify-write updates. If not set, a blind " overwrite" update happens. Corresponds to the JSON property etag

Returns:

  • (String)


14320
14321
14322
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14320

def etag
  @etag
end

#explanation_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec

Specification of Model explanation. Corresponds to the JSON property explanationSpec



14325
14326
14327
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14325

def explanation_spec
  @explanation_spec
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


14334
14335
14336
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14334

def labels
  @labels
end

#metadataObject

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information. Corresponds to the JSON property metadata

Returns:

  • (Object)


14341
14342
14343
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14341

def 
  @metadata
end

#metadata_artifactString

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/project/locations/location/metadataStores/metadata_store/ artifacts/artifact`. Corresponds to the JSON propertymetadataArtifact`

Returns:

  • (String)


14349
14350
14351
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14349

def 
  @metadata_artifact
end

#metadata_schema_uriString

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property metadataSchemaUri

Returns:

  • (String)


14362
14363
14364
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14362

def 
  @metadata_schema_uri
end

#model_source_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo

Detail description of the source information of the model. Corresponds to the JSON property modelSourceInfo



14367
14368
14369
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14367

def model_source_info
  @model_source_info
end

#nameString

The resource name of the Model. Corresponds to the JSON property name

Returns:

  • (String)


14372
14373
14374
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14372

def name
  @name
end

#original_model_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo

Contains information about the original Model if this Model is a copy. Corresponds to the JSON property originalModelInfo



14377
14378
14379
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14377

def original_model_info
  @original_model_info
end

#pipeline_jobString

Optional. This field is populated if the model is produced by a pipeline job. Corresponds to the JSON property pipelineJob

Returns:

  • (String)


14382
14383
14384
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14382

def pipeline_job
  @pipeline_job
end

#predict_schemataGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata

Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. Corresponds to the JSON property predictSchemata



14388
14389
14390
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14388

def predict_schemata
  @predict_schemata
end

#satisfies_pziBoolean Also known as: satisfies_pzi?

Output only. Reserved for future use. Corresponds to the JSON property satisfiesPzi

Returns:

  • (Boolean)


14393
14394
14395
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14393

def satisfies_pzi
  @satisfies_pzi
end

#satisfies_pzsBoolean Also known as: satisfies_pzs?

Output only. Reserved for future use. Corresponds to the JSON property satisfiesPzs

Returns:

  • (Boolean)


14399
14400
14401
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14399

def satisfies_pzs
  @satisfies_pzs
end

#supported_deployment_resources_typesArray<String>

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService. Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats. Corresponds to the JSON property supportedDeploymentResourcesTypes

Returns:

  • (Array<String>)


14413
14414
14415
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14413

def supported_deployment_resources_types
  @supported_deployment_resources_types
end

#supported_export_formatsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export. Corresponds to the JSON property supportedExportFormats



14419
14420
14421
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14419

def supported_export_formats
  @supported_export_formats
end

#supported_input_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource. * csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedInputStorageFormats

Returns:

  • (Array<String>)


14438
14439
14440
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14438

def supported_input_storage_formats
  @supported_input_storage_formats
end

#supported_output_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata. prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedOutputStorageFormats

Returns:

  • (Array<String>)


14456
14457
14458
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14456

def supported_output_storage_formats
  @supported_output_storage_formats
end

#training_pipelineString

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any. Corresponds to the JSON property trainingPipeline

Returns:

  • (String)


14462
14463
14464
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14462

def training_pipeline
  @training_pipeline
end

#update_timeString

Output only. Timestamp when this Model was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


14467
14468
14469
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14467

def update_time
  @update_time
end

#version_aliasesArray<String>

User provided version aliases so that a model version can be referenced via alias (i.e. projects/project/locations/location/models/model_id@ version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126 [a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`

Returns:

  • (Array<String>)


14478
14479
14480
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14478

def version_aliases
  @version_aliases
end

#version_create_timeString

Output only. Timestamp when this version was created. Corresponds to the JSON property versionCreateTime

Returns:

  • (String)


14483
14484
14485
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14483

def version_create_time
  @version_create_time
end

#version_descriptionString

The description of this version. Corresponds to the JSON property versionDescription

Returns:

  • (String)


14488
14489
14490
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14488

def version_description
  @version_description
end

#version_idString

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation. Corresponds to the JSON property versionId

Returns:

  • (String)


14495
14496
14497
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14495

def version_id
  @version_id
end

#version_update_timeString

Output only. Timestamp when this version was most recently updated. Corresponds to the JSON property versionUpdateTime

Returns:

  • (String)


14500
14501
14502
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14500

def version_update_time
  @version_update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14507

def update!(**args)
  @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri)
  @base_model_source = args[:base_model_source] if args.key?(:base_model_source)
  @container_spec = args[:container_spec] if args.key?(:container_spec)
  @create_time = args[:create_time] if args.key?(:create_time)
  @data_stats = args[:data_stats] if args.key?(:data_stats)
  @deployed_models = args[:deployed_models] if args.key?(:deployed_models)
  @description = args[:description] if args.key?(:description)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @etag = args[:etag] if args.key?(:etag)
  @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec)
  @labels = args[:labels] if args.key?(:labels)
  @metadata = args[:metadata] if args.key?(:metadata)
  @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact)
  @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri)
  @model_source_info = args[:model_source_info] if args.key?(:model_source_info)
  @name = args[:name] if args.key?(:name)
  @original_model_info = args[:original_model_info] if args.key?(:original_model_info)
  @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job)
  @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata)
  @satisfies_pzi = args[:satisfies_pzi] if args.key?(:satisfies_pzi)
  @satisfies_pzs = args[:satisfies_pzs] if args.key?(:satisfies_pzs)
  @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types)
  @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats)
  @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats)
  @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats)
  @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline)
  @update_time = args[:update_time] if args.key?(:update_time)
  @version_aliases = args[:version_aliases] if args.key?(:version_aliases)
  @version_create_time = args[:version_create_time] if args.key?(:version_create_time)
  @version_description = args[:version_description] if args.key?(:version_description)
  @version_id = args[:version_id] if args.key?(:version_id)
  @version_update_time = args[:version_update_time] if args.key?(:version_update_time)
end