Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only.
-
#create_time ⇒ String
Output only.
-
#display_name ⇒ String
Required.
-
#enable_monitoring_pipeline_logs ⇒ Boolean
(also: #enable_monitoring_pipeline_logs?)
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#endpoint ⇒ String
Required.
-
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The
Statustype defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. -
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
-
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
-
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
-
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
-
#name ⇒ String
Output only.
-
#next_schedule_time ⇒ String
Output only.
-
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.
-
#satisfies_pzi ⇒ Boolean
(also: #satisfies_pzi?)
Output only.
-
#satisfies_pzs ⇒ Boolean
(also: #satisfies_pzs?)
Output only.
-
#schedule_state ⇒ String
Output only.
-
#state ⇒ String
Output only.
-
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
-
#update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
constructor
A new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
15051 15052 15053 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15051 def initialize(**args) update!(**args) end |
Instance Attribute Details
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want
Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the
feature data types are inferred from predict_instance_schema_uri, meaning that
TFDV will use the data in the exact format(data type) as prediction request/
response. If there are any data type differences between predict instance and
TFDV instance, this field can be used to override the schema. For models
trained with Vertex AI, this field must be set as all the fields in predict
instance formatted as string.
Corresponds to the JSON property analysisInstanceSchemaUri
14894 14895 14896 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14894 def analysis_instance_schema_uri @analysis_instance_schema_uri end |
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only. The created bigquery tables for the job under customer project.
Customer could do their own query & analysis. There could be 4 log tables in
maximum: 1. Training data logging predict request/response 2. Serving data
logging predict request/response
Corresponds to the JSON property bigqueryTables
14902 14903 14904 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14902 def bigquery_tables @bigquery_tables end |
#create_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
Corresponds to the JSON property createTime
14907 14908 14909 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14907 def create_time @create_time end |
#display_name ⇒ String
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name
can be up to 128 characters long and can consist of any UTF-8 characters.
Display name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property displayName
14914 14915 14916 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14914 def display_name @display_name end |
#enable_monitoring_pipeline_logs ⇒ Boolean Also known as: enable_monitoring_pipeline_logs?
If true, the scheduled monitoring pipeline logs are sent to Google Cloud
Logging, including pipeline status and anomalies detected. Please note the
logs incur cost, which are subject to Cloud Logging pricing.
Corresponds to the JSON property enableMonitoringPipelineLogs
14922 14923 14924 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14922 def enable_monitoring_pipeline_logs @enable_monitoring_pipeline_logs end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
14929 14930 14931 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14929 def encryption_spec @encryption_spec end |
#endpoint ⇒ String
Required. Endpoint resource name. Format: projects/project/locations/
location/endpoints/endpoint`
Corresponds to the JSON propertyendpoint`
14935 14936 14937 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14935 def endpoint @endpoint end |
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The Status type defines a logical error model that is suitable for different
programming environments, including REST APIs and RPC APIs. It is used by
gRPC. Each Status message contains three pieces of
data: error code, error message, and error details. You can find out more
about this error model and how to work with it in the API Design Guide.
Corresponds to the JSON property error
14945 14946 14947 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14945 def error @error end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your
ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64
characters (Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed. See
https://goo.gl/xmQnxf for more information and examples of labels.
Corresponds to the JSON property labels
14954 14955 14956 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14954 def labels @labels end |
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
Corresponds to the JSON property latestMonitoringPipelineMetadata
14959 14960 14961 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14959 def @latest_monitoring_pipeline_metadata end |
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs. A day is the
basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second:
3600 indicates ttl = 1 day.
Corresponds to the JSON property logTtl
14966 14967 14968 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14966 def log_ttl @log_ttl end |
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
Corresponds to the JSON property loggingSamplingStrategy
14971 14972 14973 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14971 def logging_sampling_strategy @logging_sampling_strategy end |
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required. The config for monitoring objectives. This is a per DeployedModel
config. Each DeployedModel needs to be configured separately.
Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs
14977 14978 14979 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14977 def model_deployment_monitoring_objective_configs @model_deployment_monitoring_objective_configs end |
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig
14982 14983 14984 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14982 def model_deployment_monitoring_schedule_config @model_deployment_monitoring_schedule_config end |
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
Corresponds to the JSON property modelMonitoringAlertConfig
14987 14988 14989 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14987 def model_monitoring_alert_config @model_monitoring_alert_config end |
#name ⇒ String
Output only. Resource name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property name
14992 14993 14994 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14992 def name @name end |
#next_schedule_time ⇒ String
Output only. Timestamp when this monitoring pipeline will be scheduled to run
for the next round.
Corresponds to the JSON property nextScheduleTime
14998 14999 15000 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 14998 def next_schedule_time @next_schedule_time end |
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are
given to format this Endpoint's prediction (and explanation). If not set, we
will generate predict schema from collected predict requests.
Corresponds to the JSON property predictInstanceSchemaUri
15005 15006 15007 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15005 def predict_instance_schema_uri @predict_instance_schema_uri end |
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be
set as a replacement of ModelDeploymentMonitoringJob.
predict_instance_schema_uri. If not set, we will generate predict schema from
collected predict requests.
Corresponds to the JSON property samplePredictInstance
15013 15014 15015 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15013 def sample_predict_instance @sample_predict_instance end |
#satisfies_pzi ⇒ Boolean Also known as: satisfies_pzi?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzi
15018 15019 15020 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15018 def satisfies_pzi @satisfies_pzi end |
#satisfies_pzs ⇒ Boolean Also known as: satisfies_pzs?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzs
15024 15025 15026 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15024 def satisfies_pzs @satisfies_pzs end |
#schedule_state ⇒ String
Output only. Schedule state when the monitoring job is in Running state.
Corresponds to the JSON property scheduleState
15030 15031 15032 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15030 def schedule_state @schedule_state end |
#state ⇒ String
Output only. The detailed state of the monitoring job. When the job is still
creating, the state will be 'PENDING'. Once the job is successfully created,
the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume
the job, the state will return to 'RUNNING'.
Corresponds to the JSON property state
15038 15039 15040 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15038 def state @state end |
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
Corresponds to the JSON property statsAnomaliesBaseDirectory
15043 15044 15045 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15043 def stats_anomalies_base_directory @stats_anomalies_base_directory end |
#update_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most
recently.
Corresponds to the JSON property updateTime
15049 15050 15051 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15049 def update_time @update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15056 def update!(**args) @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri) @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables) @create_time = args[:create_time] if args.key?(:create_time) @display_name = args[:display_name] if args.key?(:display_name) @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @endpoint = args[:endpoint] if args.key?(:endpoint) @error = args[:error] if args.key?(:error) @labels = args[:labels] if args.key?(:labels) @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata) @log_ttl = args[:log_ttl] if args.key?(:log_ttl) @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy) @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs) @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config) @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config) @name = args[:name] if args.key?(:name) @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time) @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri) @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance) @satisfies_pzi = args[:satisfies_pzi] if args.key?(:satisfies_pzi) @satisfies_pzs = args[:satisfies_pzs] if args.key?(:satisfies_pzs) @schedule_state = args[:schedule_state] if args.key?(:schedule_state) @state = args[:state] if args.key?(:state) @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory) @update_time = args[:update_time] if args.key?(:update_time) end |