Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.



23004
23005
23006
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23004

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#confidence_thresholdFloat

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value. Corresponds to the JSON property confidenceThreshold

Returns:

  • (Float)


22913
22914
22915
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22913

def confidence_threshold
  @confidence_threshold
end

#confusion_matrixGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold. Corresponds to the JSON property confusionMatrix



22918
22919
22920
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22918

def confusion_matrix
  @confusion_matrix
end

#f1_scoreFloat

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score. Corresponds to the JSON property f1Score

Returns:

  • (Float)


22924
22925
22926
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22924

def f1_score
  @f1_score
end

#f1_score_at1Float

The harmonic mean of recallAt1 and precisionAt1. Corresponds to the JSON property f1ScoreAt1

Returns:

  • (Float)


22929
22930
22931
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22929

def f1_score_at1
  @f1_score_at1
end

#f1_score_macroFloat

Macro-averaged F1 Score. Corresponds to the JSON property f1ScoreMacro

Returns:

  • (Float)


22934
22935
22936
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22934

def f1_score_macro
  @f1_score_macro
end

#f1_score_microFloat

Micro-averaged F1 Score. Corresponds to the JSON property f1ScoreMicro

Returns:

  • (Float)


22939
22940
22941
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22939

def f1_score_micro
  @f1_score_micro
end

#false_negative_countFixnum

The number of ground truth labels that are not matched by a Model created label. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


22945
22946
22947
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22945

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

The number of Model created labels that do not match a ground truth label. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


22950
22951
22952
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22950

def false_positive_count
  @false_positive_count
end

#false_positive_rateFloat

False Positive Rate for the given confidence threshold. Corresponds to the JSON property falsePositiveRate

Returns:

  • (Float)


22955
22956
22957
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22955

def false_positive_rate
  @false_positive_rate
end

#false_positive_rate_at1Float

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property falsePositiveRateAt1

Returns:

  • (Float)


22961
22962
22963
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22961

def false_positive_rate_at1
  @false_positive_rate_at1
end

#max_predictionsFixnum

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold. Corresponds to the JSON property maxPredictions

Returns:

  • (Fixnum)


22968
22969
22970
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22968

def max_predictions
  @max_predictions
end

#precisionFloat

Precision for the given confidence threshold. Corresponds to the JSON property precision

Returns:

  • (Float)


22973
22974
22975
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22973

def precision
  @precision
end

#precision_at1Float

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property precisionAt1

Returns:

  • (Float)


22979
22980
22981
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22979

def precision_at1
  @precision_at1
end

#recallFloat

Recall (True Positive Rate) for the given confidence threshold. Corresponds to the JSON property recall

Returns:

  • (Float)


22984
22985
22986
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22984

def recall
  @recall
end

#recall_at1Float

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property recallAt1

Returns:

  • (Float)


22991
22992
22993
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22991

def recall_at1
  @recall_at1
end

#true_negative_countFixnum

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


22997
22998
22999
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 22997

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

The number of Model created labels that match a ground truth label. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


23002
23003
23004
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23002

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23009

def update!(**args)
  @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold)
  @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1)
  @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro)
  @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate)
  @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1)
  @max_predictions = args[:max_predictions] if args.key?(:max_predictions)
  @precision = args[:precision] if args.key?(:precision)
  @precision_at1 = args[:precision_at1] if args.key?(:precision_at1)
  @recall = args[:recall] if args.key?(:recall)
  @recall_at1 = args[:recall_at1] if args.key?(:recall_at1)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end