Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Metrics for forecasting evaluation results.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics

Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetrics.



23142
23143
23144
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23142

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#mean_absolute_errorFloat

Mean Absolute Error (MAE). Corresponds to the JSON property meanAbsoluteError

Returns:

  • (Float)


23099
23100
23101
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23099

def mean_absolute_error
  @mean_absolute_error
end

#mean_absolute_percentage_errorFloat

Mean absolute percentage error. Infinity when there are zeros in the ground truth. Corresponds to the JSON property meanAbsolutePercentageError

Returns:

  • (Float)


23105
23106
23107
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23105

def mean_absolute_percentage_error
  @mean_absolute_percentage_error
end

#quantile_metricsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>

The quantile metrics entries for each quantile. Corresponds to the JSON property quantileMetrics



23110
23111
23112
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23110

def quantile_metrics
  @quantile_metrics
end

#r_squaredFloat

Coefficient of determination as Pearson correlation coefficient. Undefined when ground truth or predictions are constant or near constant. Corresponds to the JSON property rSquared

Returns:

  • (Float)


23116
23117
23118
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23116

def r_squared
  @r_squared
end

#root_mean_squared_errorFloat

Root Mean Squared Error (RMSE). Corresponds to the JSON property rootMeanSquaredError

Returns:

  • (Float)


23121
23122
23123
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23121

def root_mean_squared_error
  @root_mean_squared_error
end

#root_mean_squared_log_errorFloat

Root mean squared log error. Undefined when there are negative ground truth values or predictions. Corresponds to the JSON property rootMeanSquaredLogError

Returns:

  • (Float)


23127
23128
23129
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23127

def root_mean_squared_log_error
  @root_mean_squared_log_error
end

#root_mean_squared_percentage_errorFloat

Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary when MSPE is negative. Corresponds to the JSON property rootMeanSquaredPercentageError

Returns:

  • (Float)


23133
23134
23135
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23133

def root_mean_squared_percentage_error
  @root_mean_squared_percentage_error
end

#weighted_absolute_percentage_errorFloat

Weighted Absolute Percentage Error. Does not use weights, this is just what the metric is called. Undefined if actual values sum to zero. Will be very large if actual values sum to a very small number. Corresponds to the JSON property weightedAbsolutePercentageError

Returns:

  • (Float)


23140
23141
23142
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23140

def weighted_absolute_percentage_error
  @weighted_absolute_percentage_error
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23147

def update!(**args)
  @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error)
  @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error)
  @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics)
  @r_squared = args[:r_squared] if args.key?(:r_squared)
  @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error)
  @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error)
  @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error)
  @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error)
end