Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1IndexDatapoint.



11755
11756
11757
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11755

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



11721
11722
11723
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11721

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


11726
11727
11728
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11726

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


11732
11733
11734
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11732

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



11739
11740
11741
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11739

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



11747
11748
11749
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11747

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



11753
11754
11755
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11753

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11760
11761
11762
11763
11764
11765
11766
11767
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 11760

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end