Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob

Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.



10451
10452
10453
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10451

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#analysis_instance_schema_uriString

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/ response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string. Corresponds to the JSON property analysisInstanceSchemaUri

Returns:

  • (String)


10306
10307
10308
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10306

def analysis_instance_schema_uri
  @analysis_instance_schema_uri
end

#bigquery_tablesArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum: 1. Training data logging predict request/response 2. Serving data logging predict request/response Corresponds to the JSON property bigqueryTables



10314
10315
10316
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10314

def bigquery_tables
  @bigquery_tables
end

#create_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was created. Corresponds to the JSON property createTime

Returns:

  • (String)


10319
10320
10321
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10319

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property displayName

Returns:

  • (String)


10326
10327
10328
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10326

def display_name
  @display_name
end

#enable_monitoring_pipeline_logsBoolean Also known as: enable_monitoring_pipeline_logs?

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing. Corresponds to the JSON property enableMonitoringPipelineLogs

Returns:

  • (Boolean)


10334
10335
10336
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10334

def enable_monitoring_pipeline_logs
  @enable_monitoring_pipeline_logs
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



10341
10342
10343
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10341

def encryption_spec
  @encryption_spec
end

#endpointString

Required. Endpoint resource name. Format: projects/project/locations/ location/endpoints/endpoint` Corresponds to the JSON propertyendpoint`

Returns:

  • (String)


10347
10348
10349
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10347

def endpoint
  @endpoint
end

#errorGoogle::Apis::AiplatformV1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



10357
10358
10359
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10357

def error
  @error
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


10366
10367
10368
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10366

def labels
  @labels
end

#latest_monitoring_pipeline_metadataGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata

All metadata of most recent monitoring pipelines. Corresponds to the JSON property latestMonitoringPipelineMetadata



10371
10372
10373
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10371

def 
  @latest_monitoring_pipeline_metadata
end

#log_ttlString

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second: 3600 indicates ttl = 1 day. Corresponds to the JSON property logTtl

Returns:

  • (String)


10378
10379
10380
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10378

def log_ttl
  @log_ttl
end

#logging_sampling_strategyGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy

Sampling Strategy for logging, can be for both training and prediction dataset. Corresponds to the JSON property loggingSamplingStrategy



10383
10384
10385
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10383

def logging_sampling_strategy
  @logging_sampling_strategy
end

#model_deployment_monitoring_objective_configsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately. Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs



10389
10390
10391
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10389

def model_deployment_monitoring_objective_configs
  @model_deployment_monitoring_objective_configs
end

#model_deployment_monitoring_schedule_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig

The config for scheduling monitoring job. Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig



10394
10395
10396
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10394

def model_deployment_monitoring_schedule_config
  @model_deployment_monitoring_schedule_config
end

#model_monitoring_alert_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig

Alert config for model monitoring. Corresponds to the JSON property modelMonitoringAlertConfig



10399
10400
10401
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10399

def model_monitoring_alert_config
  @model_monitoring_alert_config
end

#nameString

Output only. Resource name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property name

Returns:

  • (String)


10404
10405
10406
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10404

def name
  @name
end

#next_schedule_timeString

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round. Corresponds to the JSON property nextScheduleTime

Returns:

  • (String)


10410
10411
10412
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10410

def next_schedule_time
  @next_schedule_time
end

#predict_instance_schema_uriString

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property predictInstanceSchemaUri

Returns:

  • (String)


10417
10418
10419
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10417

def predict_instance_schema_uri
  @predict_instance_schema_uri
end

#sample_predict_instanceObject

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob. predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property samplePredictInstance

Returns:

  • (Object)


10425
10426
10427
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10425

def sample_predict_instance
  @sample_predict_instance
end

#schedule_stateString

Output only. Schedule state when the monitoring job is in Running state. Corresponds to the JSON property scheduleState

Returns:

  • (String)


10430
10431
10432
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10430

def schedule_state
  @schedule_state
end

#stateString

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'. Corresponds to the JSON property state

Returns:

  • (String)


10438
10439
10440
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10438

def state
  @state
end

#stats_anomalies_base_directoryGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination

The Google Cloud Storage location where the output is to be written to. Corresponds to the JSON property statsAnomaliesBaseDirectory



10443
10444
10445
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10443

def stats_anomalies_base_directory
  @stats_anomalies_base_directory
end

#update_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. Corresponds to the JSON property updateTime

Returns:

  • (String)


10449
10450
10451
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10449

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10456

def update!(**args)
  @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri)
  @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @endpoint = args[:endpoint] if args.key?(:endpoint)
  @error = args[:error] if args.key?(:error)
  @labels = args[:labels] if args.key?(:labels)
  @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata)
  @log_ttl = args[:log_ttl] if args.key?(:log_ttl)
  @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy)
  @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs)
  @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config)
  @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config)
  @name = args[:name] if args.key?(:name)
  @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time)
  @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri)
  @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance)
  @schedule_state = args[:schedule_state] if args.key?(:schedule_state)
  @state = args[:state] if args.key?(:state)
  @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory)
  @update_time = args[:update_time] if args.key?(:update_time)
end