Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metrics for classification evaluation results.
Instance Attribute Summary collapse
-
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric.
-
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric.
-
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each
confidenceThresholdin 0.00,0.05,0.10,...,0.95,0.96,0.97,0. -
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
-
#log_loss ⇒ Float
The Log Loss metric.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics.
15265 15266 15267 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15265 def initialize(**args) update!(**args) end |
Instance Attribute Details
#au_prc ⇒ Float
The Area Under Precision-Recall Curve metric. Micro-averaged for the overall
evaluation.
Corresponds to the JSON property auPrc
15238 15239 15240 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15238 def au_prc @au_prc end |
#au_roc ⇒ Float
The Area Under Receiver Operating Characteristic curve metric. Micro-averaged
for the overall evaluation.
Corresponds to the JSON property auRoc
15244 15245 15246 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15244 def au_roc @au_roc end |
#confidence_metrics ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics>
Metrics for each confidenceThreshold in 0.00,0.05,0.10,...,0.95,0.96,0.97,0.
98,0.99 and positionThreshold = INT32_MAX_VALUE. ROC and precision-recall
curves, and other aggregated metrics are derived from them. The confidence
metrics entries may also be supplied for additional values of
positionThreshold, but from these no aggregated metrics are computed.
Corresponds to the JSON property confidenceMetrics
15253 15254 15255 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15253 def confidence_metrics @confidence_metrics end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation.
Corresponds to the JSON property confusionMatrix
15258 15259 15260 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15258 def confusion_matrix @confusion_matrix end |
#log_loss ⇒ Float
The Log Loss metric.
Corresponds to the JSON property logLoss
15263 15264 15265 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15263 def log_loss @log_loss end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
15270 15271 15272 15273 15274 15275 15276 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15270 def update!(**args) @au_prc = args[:au_prc] if args.key?(:au_prc) @au_roc = args[:au_roc] if args.key?(:au_roc) @confidence_metrics = args[:confidence_metrics] if args.key?(:confidence_metrics) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @log_loss = args[:log_loss] if args.key?(:log_loss) end |