Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
-
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
-
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created label.
-
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the
confidenceThreshold
. -
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
23314 23315 23316 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23314 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
23223 23224 23225 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23223 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
Corresponds to the JSON property confusionMatrix
23228 23229 23230 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23228 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision. For summary metrics, it computes
the micro-averaged F1 score.
Corresponds to the JSON property f1Score
23234 23235 23236 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23234 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
Corresponds to the JSON property f1ScoreAt1
23239 23240 23241 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23239 def f1_score_at1 @f1_score_at1 end |
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMacro
23244 23245 23246 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23244 def f1_score_macro @f1_score_macro end |
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMicro
23249 23250 23251 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23249 def f1_score_micro @f1_score_micro end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created
label.
Corresponds to the JSON property falseNegativeCount
23255 23256 23257 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23255 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
23260 23261 23262 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23260 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
23265 23266 23267 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23265 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property falsePositiveRateAt1
23271 23272 23273 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23271 def false_positive_rate_at1 @false_positive_rate_at1 end |
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidenceThreshold
.
Corresponds to the JSON property maxPredictions
23278 23279 23280 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23278 def max_predictions @max_predictions end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
23283 23284 23285 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23283 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property precisionAt1
23289 23290 23291 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23289 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
23294 23295 23296 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23294 def recall @recall end |
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
DataItem.
Corresponds to the JSON property recallAt1
23301 23302 23303 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23301 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
23307 23308 23309 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23307 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
23312 23313 23314 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23312 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 23319 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro) @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @max_predictions = args[:max_predictions] if args.key?(:max_predictions) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |