Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapoint

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A datapoint of Index.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1IndexDatapoint

Returns a new instance of GoogleCloudAiplatformV1IndexDatapoint.



12784
12785
12786
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12784

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#crowding_tagGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointCrowdingTag

Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingTag



12750
12751
12752
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12750

def crowding_tag
  @crowding_tag
end

#datapoint_idString

Required. Unique identifier of the datapoint. Corresponds to the JSON property datapointId

Returns:

  • (String)


12755
12756
12757
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12755

def datapoint_id
  @datapoint_id
end

#feature_vectorArray<Float>

Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions]. Corresponds to the JSON property featureVector

Returns:

  • (Array<Float>)


12761
12762
12763
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12761

def feature_vector
  @feature_vector
end

#numeric_restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointNumericRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons. Corresponds to the JSON property numericRestricts



12768
12769
12770
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12768

def numeric_restricts
  @numeric_restricts
end

#restrictsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointRestriction>

Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google. com/vertex-ai/docs/matching-engine/filtering Corresponds to the JSON property restricts



12776
12777
12778
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12776

def restricts
  @restricts
end

#sparse_embeddingGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1IndexDatapointSparseEmbedding

Feature embedding vector for sparse index. An array of numbers whose values are located in the specified dimensions. Corresponds to the JSON property sparseEmbedding



12782
12783
12784
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12782

def sparse_embedding
  @sparse_embedding
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



12789
12790
12791
12792
12793
12794
12795
12796
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12789

def update!(**args)
  @crowding_tag = args[:crowding_tag] if args.key?(:crowding_tag)
  @datapoint_id = args[:datapoint_id] if args.key?(:datapoint_id)
  @feature_vector = args[:feature_vector] if args.key?(:feature_vector)
  @numeric_restricts = args[:numeric_restricts] if args.key?(:numeric_restricts)
  @restricts = args[:restricts] if args.key?(:restricts)
  @sparse_embedding = args[:sparse_embedding] if args.key?(:sparse_embedding)
end