Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A trained machine learning Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1Model

Returns a new instance of GoogleCloudAiplatformV1Model.



15980
15981
15982
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15980

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#artifact_uriString

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models. Corresponds to the JSON property artifactUri

Returns:

  • (String)


15745
15746
15747
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15745

def artifact_uri
  @artifact_uri
end

#base_model_sourceGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelBaseModelSource

User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. Corresponds to the JSON property baseModelSource



15751
15752
15753
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15751

def base_model_source
  @base_model_source
end

#container_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec

Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification. Corresponds to the JSON property containerSpec



15759
15760
15761
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15759

def container_spec
  @container_spec
end

#create_timeString

Output only. Timestamp when this Model was uploaded into Vertex AI. Corresponds to the JSON property createTime

Returns:

  • (String)


15764
15765
15766
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15764

def create_time
  @create_time
end

#data_statsGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDataStats

Stats of data used for train or evaluate the Model. Corresponds to the JSON property dataStats



15769
15770
15771
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15769

def data_stats
  @data_stats
end

#deployed_modelsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations. Corresponds to the JSON property deployedModels



15775
15776
15777
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15775

def deployed_models
  @deployed_models
end

#descriptionString

The description of the Model. Corresponds to the JSON property description

Returns:

  • (String)


15780
15781
15782
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15780

def description
  @description
end

#display_nameString

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. Corresponds to the JSON property displayName

Returns:

  • (String)


15786
15787
15788
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15786

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



15792
15793
15794
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15792

def encryption_spec
  @encryption_spec
end

#etagString

Used to perform consistent read-modify-write updates. If not set, a blind " overwrite" update happens. Corresponds to the JSON property etag

Returns:

  • (String)


15798
15799
15800
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15798

def etag
  @etag
end

#explanation_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec

Specification of Model explanation. Corresponds to the JSON property explanationSpec



15803
15804
15805
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15803

def explanation_spec
  @explanation_spec
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


15812
15813
15814
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15812

def labels
  @labels
end

#metadataObject

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information. Corresponds to the JSON property metadata

Returns:

  • (Object)


15819
15820
15821
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15819

def 
  @metadata
end

#metadata_artifactString

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/project/locations/location/metadataStores/metadata_store/ artifacts/artifact`. Corresponds to the JSON propertymetadataArtifact`

Returns:

  • (String)


15827
15828
15829
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15827

def 
  @metadata_artifact
end

#metadata_schema_uriString

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property metadataSchemaUri

Returns:

  • (String)


15840
15841
15842
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15840

def 
  @metadata_schema_uri
end

#model_source_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo

Detail description of the source information of the model. Corresponds to the JSON property modelSourceInfo



15845
15846
15847
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15845

def model_source_info
  @model_source_info
end

#nameString

The resource name of the Model. Corresponds to the JSON property name

Returns:

  • (String)


15850
15851
15852
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15850

def name
  @name
end

#original_model_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo

Contains information about the original Model if this Model is a copy. Corresponds to the JSON property originalModelInfo



15855
15856
15857
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15855

def original_model_info
  @original_model_info
end

#pipeline_jobString

Optional. This field is populated if the model is produced by a pipeline job. Corresponds to the JSON property pipelineJob

Returns:

  • (String)


15860
15861
15862
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15860

def pipeline_job
  @pipeline_job
end

#predict_schemataGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata

Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. Corresponds to the JSON property predictSchemata



15866
15867
15868
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15866

def predict_schemata
  @predict_schemata
end

#satisfies_pziBoolean Also known as: satisfies_pzi?

Output only. Reserved for future use. Corresponds to the JSON property satisfiesPzi

Returns:

  • (Boolean)


15871
15872
15873
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15871

def satisfies_pzi
  @satisfies_pzi
end

#satisfies_pzsBoolean Also known as: satisfies_pzs?

Output only. Reserved for future use. Corresponds to the JSON property satisfiesPzs

Returns:

  • (Boolean)


15877
15878
15879
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15877

def satisfies_pzs
  @satisfies_pzs
end

#supported_deployment_resources_typesArray<String>

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService. Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats. Corresponds to the JSON property supportedDeploymentResourcesTypes

Returns:

  • (Array<String>)


15891
15892
15893
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15891

def supported_deployment_resources_types
  @supported_deployment_resources_types
end

#supported_export_formatsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export. Corresponds to the JSON property supportedExportFormats



15897
15898
15899
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15897

def supported_export_formats
  @supported_export_formats
end

#supported_input_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource. * csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedInputStorageFormats

Returns:

  • (Array<String>)


15916
15917
15918
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15916

def supported_input_storage_formats
  @supported_input_storage_formats
end

#supported_output_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata. prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedOutputStorageFormats

Returns:

  • (Array<String>)


15934
15935
15936
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15934

def supported_output_storage_formats
  @supported_output_storage_formats
end

#training_pipelineString

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any. Corresponds to the JSON property trainingPipeline

Returns:

  • (String)


15940
15941
15942
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15940

def training_pipeline
  @training_pipeline
end

#update_timeString

Output only. Timestamp when this Model was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


15945
15946
15947
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15945

def update_time
  @update_time
end

#version_aliasesArray<String>

User provided version aliases so that a model version can be referenced via alias (i.e. projects/project/locations/location/models/model_id@ version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126 [a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`

Returns:

  • (Array<String>)


15956
15957
15958
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15956

def version_aliases
  @version_aliases
end

#version_create_timeString

Output only. Timestamp when this version was created. Corresponds to the JSON property versionCreateTime

Returns:

  • (String)


15961
15962
15963
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15961

def version_create_time
  @version_create_time
end

#version_descriptionString

The description of this version. Corresponds to the JSON property versionDescription

Returns:

  • (String)


15966
15967
15968
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15966

def version_description
  @version_description
end

#version_idString

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation. Corresponds to the JSON property versionId

Returns:

  • (String)


15973
15974
15975
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15973

def version_id
  @version_id
end

#version_update_timeString

Output only. Timestamp when this version was most recently updated. Corresponds to the JSON property versionUpdateTime

Returns:

  • (String)


15978
15979
15980
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15978

def version_update_time
  @version_update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 15985

def update!(**args)
  @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri)
  @base_model_source = args[:base_model_source] if args.key?(:base_model_source)
  @container_spec = args[:container_spec] if args.key?(:container_spec)
  @create_time = args[:create_time] if args.key?(:create_time)
  @data_stats = args[:data_stats] if args.key?(:data_stats)
  @deployed_models = args[:deployed_models] if args.key?(:deployed_models)
  @description = args[:description] if args.key?(:description)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @etag = args[:etag] if args.key?(:etag)
  @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec)
  @labels = args[:labels] if args.key?(:labels)
  @metadata = args[:metadata] if args.key?(:metadata)
  @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact)
  @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri)
  @model_source_info = args[:model_source_info] if args.key?(:model_source_info)
  @name = args[:name] if args.key?(:name)
  @original_model_info = args[:original_model_info] if args.key?(:original_model_info)
  @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job)
  @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata)
  @satisfies_pzi = args[:satisfies_pzi] if args.key?(:satisfies_pzi)
  @satisfies_pzs = args[:satisfies_pzs] if args.key?(:satisfies_pzs)
  @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types)
  @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats)
  @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats)
  @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats)
  @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline)
  @update_time = args[:update_time] if args.key?(:update_time)
  @version_aliases = args[:version_aliases] if args.key?(:version_aliases)
  @version_create_time = args[:version_create_time] if args.key?(:version_create_time)
  @version_description = args[:version_description] if args.key?(:version_description)
  @version_id = args[:version_id] if args.key?(:version_id)
  @version_update_time = args[:version_update_time] if args.key?(:version_update_time)
end