Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only.
-
#create_time ⇒ String
Output only.
-
#display_name ⇒ String
Required.
-
#enable_monitoring_pipeline_logs ⇒ Boolean
(also: #enable_monitoring_pipeline_logs?)
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#endpoint ⇒ String
Required.
-
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The
Statustype defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. -
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
-
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
-
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
-
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
-
#name ⇒ String
Output only.
-
#next_schedule_time ⇒ String
Output only.
-
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.
-
#satisfies_pzi ⇒ Boolean
(also: #satisfies_pzi?)
Output only.
-
#satisfies_pzs ⇒ Boolean
(also: #satisfies_pzs?)
Output only.
-
#schedule_state ⇒ String
Output only.
-
#state ⇒ String
Output only.
-
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
-
#update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
constructor
A new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
16529 16530 16531 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16529 def initialize(**args) update!(**args) end |
Instance Attribute Details
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want
Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the
feature data types are inferred from predict_instance_schema_uri, meaning that
TFDV will use the data in the exact format(data type) as prediction request/
response. If there are any data type differences between predict instance and
TFDV instance, this field can be used to override the schema. For models
trained with Vertex AI, this field must be set as all the fields in predict
instance formatted as string.
Corresponds to the JSON property analysisInstanceSchemaUri
16372 16373 16374 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16372 def analysis_instance_schema_uri @analysis_instance_schema_uri end |
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only. The created bigquery tables for the job under customer project.
Customer could do their own query & analysis. There could be 4 log tables in
maximum: 1. Training data logging predict request/response 2. Serving data
logging predict request/response
Corresponds to the JSON property bigqueryTables
16380 16381 16382 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16380 def bigquery_tables @bigquery_tables end |
#create_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
Corresponds to the JSON property createTime
16385 16386 16387 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16385 def create_time @create_time end |
#display_name ⇒ String
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name
can be up to 128 characters long and can consist of any UTF-8 characters.
Display name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property displayName
16392 16393 16394 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16392 def display_name @display_name end |
#enable_monitoring_pipeline_logs ⇒ Boolean Also known as: enable_monitoring_pipeline_logs?
If true, the scheduled monitoring pipeline logs are sent to Google Cloud
Logging, including pipeline status and anomalies detected. Please note the
logs incur cost, which are subject to Cloud Logging pricing.
Corresponds to the JSON property enableMonitoringPipelineLogs
16400 16401 16402 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16400 def enable_monitoring_pipeline_logs @enable_monitoring_pipeline_logs end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
16407 16408 16409 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16407 def encryption_spec @encryption_spec end |
#endpoint ⇒ String
Required. Endpoint resource name. Format: projects/project/locations/
location/endpoints/endpoint`
Corresponds to the JSON propertyendpoint`
16413 16414 16415 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16413 def endpoint @endpoint end |
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The Status type defines a logical error model that is suitable for different
programming environments, including REST APIs and RPC APIs. It is used by
gRPC. Each Status message contains three pieces of
data: error code, error message, and error details. You can find out more
about this error model and how to work with it in the API Design Guide.
Corresponds to the JSON property error
16423 16424 16425 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16423 def error @error end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your
ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64
characters (Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed. See
https://goo.gl/xmQnxf for more information and examples of labels.
Corresponds to the JSON property labels
16432 16433 16434 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16432 def labels @labels end |
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
Corresponds to the JSON property latestMonitoringPipelineMetadata
16437 16438 16439 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16437 def @latest_monitoring_pipeline_metadata end |
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs. A day is the
basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second:
3600 indicates ttl = 1 day.
Corresponds to the JSON property logTtl
16444 16445 16446 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16444 def log_ttl @log_ttl end |
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
Corresponds to the JSON property loggingSamplingStrategy
16449 16450 16451 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16449 def logging_sampling_strategy @logging_sampling_strategy end |
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required. The config for monitoring objectives. This is a per DeployedModel
config. Each DeployedModel needs to be configured separately.
Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs
16455 16456 16457 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16455 def model_deployment_monitoring_objective_configs @model_deployment_monitoring_objective_configs end |
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig
16460 16461 16462 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16460 def model_deployment_monitoring_schedule_config @model_deployment_monitoring_schedule_config end |
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
The alert config for model monitoring.
Corresponds to the JSON property modelMonitoringAlertConfig
16465 16466 16467 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16465 def model_monitoring_alert_config @model_monitoring_alert_config end |
#name ⇒ String
Output only. Resource name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property name
16470 16471 16472 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16470 def name @name end |
#next_schedule_time ⇒ String
Output only. Timestamp when this monitoring pipeline will be scheduled to run
for the next round.
Corresponds to the JSON property nextScheduleTime
16476 16477 16478 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16476 def next_schedule_time @next_schedule_time end |
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are
given to format this Endpoint's prediction (and explanation). If not set, we
will generate predict schema from collected predict requests.
Corresponds to the JSON property predictInstanceSchemaUri
16483 16484 16485 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16483 def predict_instance_schema_uri @predict_instance_schema_uri end |
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be
set as a replacement of ModelDeploymentMonitoringJob.
predict_instance_schema_uri. If not set, we will generate predict schema from
collected predict requests.
Corresponds to the JSON property samplePredictInstance
16491 16492 16493 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16491 def sample_predict_instance @sample_predict_instance end |
#satisfies_pzi ⇒ Boolean Also known as: satisfies_pzi?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzi
16496 16497 16498 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16496 def satisfies_pzi @satisfies_pzi end |
#satisfies_pzs ⇒ Boolean Also known as: satisfies_pzs?
Output only. Reserved for future use.
Corresponds to the JSON property satisfiesPzs
16502 16503 16504 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16502 def satisfies_pzs @satisfies_pzs end |
#schedule_state ⇒ String
Output only. Schedule state when the monitoring job is in Running state.
Corresponds to the JSON property scheduleState
16508 16509 16510 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16508 def schedule_state @schedule_state end |
#state ⇒ String
Output only. The detailed state of the monitoring job. When the job is still
creating, the state will be 'PENDING'. Once the job is successfully created,
the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume
the job, the state will return to 'RUNNING'.
Corresponds to the JSON property state
16516 16517 16518 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16516 def state @state end |
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
Corresponds to the JSON property statsAnomaliesBaseDirectory
16521 16522 16523 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16521 def stats_anomalies_base_directory @stats_anomalies_base_directory end |
#update_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most
recently.
Corresponds to the JSON property updateTime
16527 16528 16529 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16527 def update_time @update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 16534 def update!(**args) @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri) @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables) @create_time = args[:create_time] if args.key?(:create_time) @display_name = args[:display_name] if args.key?(:display_name) @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @endpoint = args[:endpoint] if args.key?(:endpoint) @error = args[:error] if args.key?(:error) @labels = args[:labels] if args.key?(:labels) @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata) @log_ttl = args[:log_ttl] if args.key?(:log_ttl) @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy) @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs) @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config) @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config) @name = args[:name] if args.key?(:name) @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time) @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri) @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance) @satisfies_pzi = args[:satisfies_pzi] if args.key?(:satisfies_pzi) @satisfies_pzs = args[:satisfies_pzs] if args.key?(:satisfies_pzs) @schedule_state = args[:schedule_state] if args.key?(:schedule_state) @state = args[:state] if args.key?(:state) @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory) @update_time = args[:update_time] if args.key?(:update_time) end |