Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.
Instance Attribute Summary collapse
-
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse representation.
-
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor.
-
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor.
-
#encoding ⇒ String
Defines how the feature is encoded into the input tensor.
-
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value.
-
#group_name ⇒ String
Name of the group that the input belongs to.
-
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor.
-
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor.
-
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature.
-
#input_tensor_name ⇒ String
Name of the input tensor for this feature.
-
#modality ⇒ String
Modality of the feature.
-
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
constructor
A new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Returns a new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
5096 5097 5098 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5096 def initialize(**args) update!(**args) end |
Instance Attribute Details
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse
representation. Refer to Tensorflow documentation for more details: https://
www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property denseShapeTensorName
5009 5010 5011 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5009 def dense_shape_tensor_name @dense_shape_tensor_name end |
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor. The shape of each baseline should
match the shape of the encoded tensor. If a scalar is provided, Vertex AI
broadcasts to the same shape as the encoded tensor.
Corresponds to the JSON property encodedBaselines
5016 5017 5018 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5016 def encoded_baselines @encoded_baselines end |
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor. Must be provided if
choosing Integrated Gradients attribution or XRAI attribution and the input
tensor is not differentiable. An encoded tensor is generated if the input
tensor is encoded by a lookup table.
Corresponds to the JSON property encodedTensorName
5024 5025 5026 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5024 def encoded_tensor_name @encoded_tensor_name end |
#encoding ⇒ String
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
Corresponds to the JSON property encoding
5029 5030 5031 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5029 def encoding @encoding end |
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value. Provides numeric information about
the feature, such as its range (min, max). If the feature has been pre-
processed, for example with z-scoring, then it provides information about how
to recover the original feature. For example, if the input feature is an image
and it has been pre-processed to obtain 0-mean and stddev = 1 values, then
original_mean, and original_stddev refer to the mean and stddev of the
original feature (e.g. image tensor) from which input feature (with mean = 0
and stddev = 1) was obtained.
Corresponds to the JSON property featureValueDomain
5041 5042 5043 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5041 def feature_value_domain @feature_value_domain end |
#group_name ⇒ String
Name of the group that the input belongs to. Features with the same group name
will be treated as one feature when computing attributions. Features grouped
together can have different shapes in value. If provided, there will be one
single attribution generated in Attribution.feature_attributions, keyed by the
group name.
Corresponds to the JSON property groupName
5050 5051 5052 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5050 def group_name @group_name end |
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor. Required when the
input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE,
INDICATOR.
Corresponds to the JSON property indexFeatureMapping
5057 5058 5059 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5057 def index_feature_mapping @index_feature_mapping end |
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor. Required when the input
tensor is a sparse representation. Refer to Tensorflow documentation for more
details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property indicesTensorName
5064 5065 5066 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5064 def indices_tensor_name @indices_tensor_name end |
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature. If no baseline is specified, Vertex AI
chooses the baseline for this feature. If multiple baselines are specified,
Vertex AI returns the average attributions across them in Attribution.
feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.
x), the shape of each baseline must match the shape of the input tensor. If a
scalar is provided, we broadcast to the same shape as the input tensor. For
custom images, the element of the baselines must be in the same format as the
feature's input in the instance[]. The schema of any single instance may be
specified via Endpoint's DeployedModels' Model's PredictSchemata's
instance_schema_uri.
Corresponds to the JSON property inputBaselines
5078 5079 5080 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5078 def input_baselines @input_baselines end |
#input_tensor_name ⇒ String
Name of the input tensor for this feature. Required and is only applicable to
Vertex AI-provided images for Tensorflow.
Corresponds to the JSON property inputTensorName
5084 5085 5086 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5084 def input_tensor_name @input_tensor_name end |
#modality ⇒ String
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
Corresponds to the JSON property modality
5089 5090 5091 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5089 def modality @modality end |
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Corresponds to the JSON property visualization
5094 5095 5096 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5094 def visualization @visualization end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 5101 def update!(**args) @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name) @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines) @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name) @encoding = args[:encoding] if args.key?(:encoding) @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain) @group_name = args[:group_name] if args.key?(:group_name) @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping) @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name) @input_baselines = args[:input_baselines] if args.key?(:input_baselines) @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name) @modality = args[:modality] if args.key?(:modality) @visualization = args[:visualization] if args.key?(:visualization) end |