Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
A trained machine learning Model.
Instance Attribute Summary collapse
-
#artifact_uri ⇒ String
Immutable.
-
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions.
-
#create_time ⇒ String
Output only.
-
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only.
-
#description ⇒ String
The description of the Model.
-
#display_name ⇒ String
Required.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#etag ⇒ String
Used to perform consistent read-modify-write updates.
-
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
-
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models.
-
#metadata ⇒ Object
Immutable.
-
#metadata_artifact ⇒ String
Output only.
-
#metadata_schema_uri ⇒ String
Immutable.
-
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
-
#name ⇒ String
The resource name of the Model.
-
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
-
#pipeline_job ⇒ String
Optional.
-
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
-
#supported_deployment_resources_types ⇒ Array<String>
Output only.
-
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only.
-
#supported_input_storage_formats ⇒ Array<String>
Output only.
-
#supported_output_storage_formats ⇒ Array<String>
Output only.
-
#training_pipeline ⇒ String
Output only.
-
#update_time ⇒ String
Output only.
-
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via alias (i.e.
projects/project/locations/location/models/model_id@version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`. -
#version_create_time ⇒ String
Output only.
-
#version_description ⇒ String
The description of this version.
-
#version_id ⇒ String
Output only.
-
#version_update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
constructor
A new instance of GoogleCloudAiplatformV1Model.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1Model
Returns a new instance of GoogleCloudAiplatformV1Model.
10043 10044 10045 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10043 def initialize(**args) update!(**args) end |
Instance Attribute Details
#artifact_uri ⇒ String
Immutable. The path to the directory containing the Model artifact and any of
its supporting files. Not present for AutoML Models or Large Models.
Corresponds to the JSON property artifactUri
9831 9832 9833 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9831 def artifact_uri @artifact_uri end |
#container_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec
Specification of a container for serving predictions. Some fields in this
message correspond to fields in the Kubernetes Container v1 core
specification.
Corresponds to the JSON property containerSpec
9839 9840 9841 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9839 def container_spec @container_spec end |
#create_time ⇒ String
Output only. Timestamp when this Model was uploaded into Vertex AI.
Corresponds to the JSON property createTime
9844 9845 9846 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9844 def create_time @create_time end |
#deployed_models ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>
Output only. The pointers to DeployedModels created from this Model. Note that
Model could have been deployed to Endpoints in different Locations.
Corresponds to the JSON property deployedModels
9850 9851 9852 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9850 def deployed_models @deployed_models end |
#description ⇒ String
The description of the Model.
Corresponds to the JSON property description
9855 9856 9857 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9855 def description @description end |
#display_name ⇒ String
Required. The display name of the Model. The name can be up to 128 characters
long and can consist of any UTF-8 characters.
Corresponds to the JSON property displayName
9861 9862 9863 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9861 def display_name @display_name end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
9867 9868 9869 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9867 def encryption_spec @encryption_spec end |
#etag ⇒ String
Used to perform consistent read-modify-write updates. If not set, a blind "
overwrite" update happens.
Corresponds to the JSON property etag
9873 9874 9875 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9873 def etag @etag end |
#explanation_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec
Specification of Model explanation.
Corresponds to the JSON property explanationSpec
9878 9879 9880 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9878 def explanation_spec @explanation_spec end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your Models. Label keys and
values can be no longer than 64 characters (Unicode codepoints), can only
contain lowercase letters, numeric characters, underscores and dashes.
International characters are allowed. See https://goo.gl/xmQnxf for more
information and examples of labels.
Corresponds to the JSON property labels
9887 9888 9889 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9887 def labels @labels end |
#metadata ⇒ Object
Immutable. An additional information about the Model; the schema of the
metadata can be found in metadata_schema. Unset if the Model does not have any
additional information.
Corresponds to the JSON property metadata
9894 9895 9896 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9894 def @metadata end |
#metadata_artifact ⇒ String
Output only. The resource name of the Artifact that was created in
MetadataStore when creating the Model. The Artifact resource name pattern is
projects/project/locations/location/metadataStores/metadata_store/
artifacts/artifact`.
Corresponds to the JSON propertymetadataArtifact`
9902 9903 9904 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9902 def @metadata_artifact end |
#metadata_schema_uri ⇒ String
Immutable. Points to a YAML file stored on Google Cloud Storage describing
additional information about the Model, that is specific to it. Unset if the
Model does not have any additional information. The schema is defined as an
OpenAPI 3.0.2 Schema Object. AutoML Models always have this
field populated by Vertex AI, if no additional metadata is needed, this field
is set to an empty string. Note: The URI given on output will be immutable and
probably different, including the URI scheme, than the one given on input. The
output URI will point to a location where the user only has a read access.
Corresponds to the JSON property metadataSchemaUri
9915 9916 9917 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9915 def @metadata_schema_uri end |
#model_source_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo
Detail description of the source information of the model.
Corresponds to the JSON property modelSourceInfo
9920 9921 9922 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9920 def model_source_info @model_source_info end |
#name ⇒ String
The resource name of the Model.
Corresponds to the JSON property name
9925 9926 9927 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9925 def name @name end |
#original_model_info ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo
Contains information about the original Model if this Model is a copy.
Corresponds to the JSON property originalModelInfo
9930 9931 9932 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9930 def original_model_info @original_model_info end |
#pipeline_job ⇒ String
Optional. This field is populated if the model is produced by a pipeline job.
Corresponds to the JSON property pipelineJob
9935 9936 9937 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9935 def pipeline_job @pipeline_job end |
#predict_schemata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata
Contains the schemata used in Model's predictions and explanations via
PredictionService.Predict, PredictionService.Explain and BatchPredictionJob.
Corresponds to the JSON property predictSchemata
9941 9942 9943 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9941 def predict_schemata @predict_schemata end |
#supported_deployment_resources_types ⇒ Array<String>
Output only. When this Model is deployed, its prediction resources are
described by the prediction_resources field of the Endpoint.deployed_models
object. Because not all Models support all resource configuration types, the
configuration types this Model supports are listed here. If no configuration
types are listed, the Model cannot be deployed to an Endpoint and does not
support online predictions (PredictionService.Predict or PredictionService.
Explain). Such a Model can serve predictions by using a BatchPredictionJob, if
it has at least one entry each in supported_input_storage_formats and
supported_output_storage_formats.
Corresponds to the JSON property supportedDeploymentResourcesTypes
9954 9955 9956 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9954 def supported_deployment_resources_types @supported_deployment_resources_types end |
#supported_export_formats ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>
Output only. The formats in which this Model may be exported. If empty, this
Model is not available for export.
Corresponds to the JSON property supportedExportFormats
9960 9961 9962 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9960 def supported_export_formats @supported_export_formats end |
#supported_input_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
input_config. If PredictSchemata.instance_schema_uri exists, the instances
should be given as per that schema. The possible formats are: * jsonl The
JSON Lines format, where each instance is a single line. Uses GcsSource. *
csv The CSV format, where each instance is a single comma-separated line. The
first line in the file is the header, containing comma-separated field names.
Uses GcsSource. * tf-record The TFRecord format, where each instance is a
single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar
to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each
instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each
line of the file is the location of an instance to process, uses gcs_source
field of the InputConfig object. If this Model doesn't support any of these
formats it means it cannot be used with a BatchPredictionJob. However, if it
has supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedInputStorageFormats
9979 9980 9981 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9979 def supported_input_storage_formats @supported_input_storage_formats end |
#supported_output_storage_formats ⇒ Array<String>
Output only. The formats this Model supports in BatchPredictionJob.
output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.
prediction_schema_uri exist, the predictions are returned together with their
instances. In other words, the prediction has the original instance data first,
followed by the actual prediction content (as per the schema). The possible
formats are: * jsonl The JSON Lines format, where each prediction is a
single line. Uses GcsDestination. * csv The CSV format, where each
prediction is a single comma-separated line. The first line in the file is the
header, containing comma-separated field names. Uses GcsDestination. *
bigquery Each prediction is a single row in a BigQuery table, uses
BigQueryDestination . If this Model doesn't support any of these formats it
means it cannot be used with a BatchPredictionJob. However, if it has
supported_deployment_resources_types, it could serve online predictions by
using PredictionService.Predict or PredictionService.Explain.
Corresponds to the JSON property supportedOutputStorageFormats
9997 9998 9999 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9997 def supported_output_storage_formats @supported_output_storage_formats end |
#training_pipeline ⇒ String
Output only. The resource name of the TrainingPipeline that uploaded this
Model, if any.
Corresponds to the JSON property trainingPipeline
10003 10004 10005 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10003 def training_pipeline @training_pipeline end |
#update_time ⇒ String
Output only. Timestamp when this Model was most recently updated.
Corresponds to the JSON property updateTime
10008 10009 10010 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10008 def update_time @update_time end |
#version_aliases ⇒ Array<String>
User provided version aliases so that a model version can be referenced via
alias (i.e. projects/project/locations/location/models/model_id@
version_alias`instead of auto-generated version id (i.e.projects/project/
locations/location/models/model_id@version_id). The format is a-z0,126
[a-z0-9] to distinguish from version_id. A default version alias will be
created for the first version of the model, and there must be exactly one
default version alias for a model.
Corresponds to the JSON propertyversionAliases`
10019 10020 10021 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10019 def version_aliases @version_aliases end |
#version_create_time ⇒ String
Output only. Timestamp when this version was created.
Corresponds to the JSON property versionCreateTime
10024 10025 10026 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10024 def version_create_time @version_create_time end |
#version_description ⇒ String
The description of this version.
Corresponds to the JSON property versionDescription
10029 10030 10031 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10029 def version_description @version_description end |
#version_id ⇒ String
Output only. Immutable. The version ID of the model. A new version is
committed when a new model version is uploaded or trained under an existing
model id. It is an auto-incrementing decimal number in string representation.
Corresponds to the JSON property versionId
10036 10037 10038 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10036 def version_id @version_id end |
#version_update_time ⇒ String
Output only. Timestamp when this version was most recently updated.
Corresponds to the JSON property versionUpdateTime
10041 10042 10043 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10041 def version_update_time @version_update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10048 def update!(**args) @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri) @container_spec = args[:container_spec] if args.key?(:container_spec) @create_time = args[:create_time] if args.key?(:create_time) @deployed_models = args[:deployed_models] if args.key?(:deployed_models) @description = args[:description] if args.key?(:description) @display_name = args[:display_name] if args.key?(:display_name) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @etag = args[:etag] if args.key?(:etag) @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec) @labels = args[:labels] if args.key?(:labels) @metadata = args[:metadata] if args.key?(:metadata) @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact) @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri) @model_source_info = args[:model_source_info] if args.key?(:model_source_info) @name = args[:name] if args.key?(:name) @original_model_info = args[:original_model_info] if args.key?(:original_model_info) @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job) @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata) @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types) @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats) @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats) @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats) @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline) @update_time = args[:update_time] if args.key?(:update_time) @version_aliases = args[:version_aliases] if args.key?(:version_aliases) @version_create_time = args[:version_create_time] if args.key?(:version_create_time) @version_description = args[:version_description] if args.key?(:version_description) @version_id = args[:version_id] if args.key?(:version_id) @version_update_time = args[:version_update_time] if args.key?(:version_update_time) end |