Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1Model

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

A trained machine learning Model.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1Model

Returns a new instance of GoogleCloudAiplatformV1Model.



10043
10044
10045
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10043

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#artifact_uriString

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models. Corresponds to the JSON property artifactUri

Returns:

  • (String)


9831
9832
9833
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9831

def artifact_uri
  @artifact_uri
end

#container_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelContainerSpec

Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification. Corresponds to the JSON property containerSpec



9839
9840
9841
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9839

def container_spec
  @container_spec
end

#create_timeString

Output only. Timestamp when this Model was uploaded into Vertex AI. Corresponds to the JSON property createTime

Returns:

  • (String)


9844
9845
9846
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9844

def create_time
  @create_time
end

#deployed_modelsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1DeployedModelRef>

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations. Corresponds to the JSON property deployedModels



9850
9851
9852
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9850

def deployed_models
  @deployed_models
end

#descriptionString

The description of the Model. Corresponds to the JSON property description

Returns:

  • (String)


9855
9856
9857
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9855

def description
  @description
end

#display_nameString

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. Corresponds to the JSON property displayName

Returns:

  • (String)


9861
9862
9863
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9861

def display_name
  @display_name
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



9867
9868
9869
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9867

def encryption_spec
  @encryption_spec
end

#etagString

Used to perform consistent read-modify-write updates. If not set, a blind " overwrite" update happens. Corresponds to the JSON property etag

Returns:

  • (String)


9873
9874
9875
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9873

def etag
  @etag
end

#explanation_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationSpec

Specification of Model explanation. Corresponds to the JSON property explanationSpec



9878
9879
9880
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9878

def explanation_spec
  @explanation_spec
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


9887
9888
9889
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9887

def labels
  @labels
end

#metadataObject

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information. Corresponds to the JSON property metadata

Returns:

  • (Object)


9894
9895
9896
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9894

def 
  @metadata
end

#metadata_artifactString

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/project/locations/location/metadataStores/metadata_store/ artifacts/artifact`. Corresponds to the JSON propertymetadataArtifact`

Returns:

  • (String)


9902
9903
9904
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9902

def 
  @metadata_artifact
end

#metadata_schema_uriString

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access. Corresponds to the JSON property metadataSchemaUri

Returns:

  • (String)


9915
9916
9917
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9915

def 
  @metadata_schema_uri
end

#model_source_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelSourceInfo

Detail description of the source information of the model. Corresponds to the JSON property modelSourceInfo



9920
9921
9922
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9920

def model_source_info
  @model_source_info
end

#nameString

The resource name of the Model. Corresponds to the JSON property name

Returns:

  • (String)


9925
9926
9927
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9925

def name
  @name
end

#original_model_infoGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelOriginalModelInfo

Contains information about the original Model if this Model is a copy. Corresponds to the JSON property originalModelInfo



9930
9931
9932
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9930

def original_model_info
  @original_model_info
end

#pipeline_jobString

Optional. This field is populated if the model is produced by a pipeline job. Corresponds to the JSON property pipelineJob

Returns:

  • (String)


9935
9936
9937
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9935

def pipeline_job
  @pipeline_job
end

#predict_schemataGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1PredictSchemata

Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. Corresponds to the JSON property predictSchemata



9941
9942
9943
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9941

def predict_schemata
  @predict_schemata
end

#supported_deployment_resources_typesArray<String>

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService. Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats. Corresponds to the JSON property supportedDeploymentResourcesTypes

Returns:

  • (Array<String>)


9954
9955
9956
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9954

def supported_deployment_resources_types
  @supported_deployment_resources_types
end

#supported_export_formatsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelExportFormat>

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export. Corresponds to the JSON property supportedExportFormats



9960
9961
9962
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9960

def supported_export_formats
  @supported_export_formats
end

#supported_input_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource. * csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource. * bigquery Each instance is a single row in BigQuery. Uses BigQuerySource. * file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedInputStorageFormats

Returns:

  • (Array<String>)


9979
9980
9981
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9979

def supported_input_storage_formats
  @supported_input_storage_formats
end

#supported_output_storage_formatsArray<String>

Output only. The formats this Model supports in BatchPredictionJob. output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata. prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain. Corresponds to the JSON property supportedOutputStorageFormats

Returns:

  • (Array<String>)


9997
9998
9999
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 9997

def supported_output_storage_formats
  @supported_output_storage_formats
end

#training_pipelineString

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any. Corresponds to the JSON property trainingPipeline

Returns:

  • (String)


10003
10004
10005
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10003

def training_pipeline
  @training_pipeline
end

#update_timeString

Output only. Timestamp when this Model was most recently updated. Corresponds to the JSON property updateTime

Returns:

  • (String)


10008
10009
10010
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10008

def update_time
  @update_time
end

#version_aliasesArray<String>

User provided version aliases so that a model version can be referenced via alias (i.e. projects/project/locations/location/models/model_id@ version_alias`instead of auto-generated version id (i.e.projects/project/ locations/location/models/model_id@version_id). The format is a-z0,126 [a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model. Corresponds to the JSON propertyversionAliases`

Returns:

  • (Array<String>)


10019
10020
10021
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10019

def version_aliases
  @version_aliases
end

#version_create_timeString

Output only. Timestamp when this version was created. Corresponds to the JSON property versionCreateTime

Returns:

  • (String)


10024
10025
10026
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10024

def version_create_time
  @version_create_time
end

#version_descriptionString

The description of this version. Corresponds to the JSON property versionDescription

Returns:

  • (String)


10029
10030
10031
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10029

def version_description
  @version_description
end

#version_idString

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation. Corresponds to the JSON property versionId

Returns:

  • (String)


10036
10037
10038
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10036

def version_id
  @version_id
end

#version_update_timeString

Output only. Timestamp when this version was most recently updated. Corresponds to the JSON property versionUpdateTime

Returns:

  • (String)


10041
10042
10043
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10041

def version_update_time
  @version_update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 10048

def update!(**args)
  @artifact_uri = args[:artifact_uri] if args.key?(:artifact_uri)
  @container_spec = args[:container_spec] if args.key?(:container_spec)
  @create_time = args[:create_time] if args.key?(:create_time)
  @deployed_models = args[:deployed_models] if args.key?(:deployed_models)
  @description = args[:description] if args.key?(:description)
  @display_name = args[:display_name] if args.key?(:display_name)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @etag = args[:etag] if args.key?(:etag)
  @explanation_spec = args[:explanation_spec] if args.key?(:explanation_spec)
  @labels = args[:labels] if args.key?(:labels)
  @metadata = args[:metadata] if args.key?(:metadata)
  @metadata_artifact = args[:metadata_artifact] if args.key?(:metadata_artifact)
  @metadata_schema_uri = args[:metadata_schema_uri] if args.key?(:metadata_schema_uri)
  @model_source_info = args[:model_source_info] if args.key?(:model_source_info)
  @name = args[:name] if args.key?(:name)
  @original_model_info = args[:original_model_info] if args.key?(:original_model_info)
  @pipeline_job = args[:pipeline_job] if args.key?(:pipeline_job)
  @predict_schemata = args[:predict_schemata] if args.key?(:predict_schemata)
  @supported_deployment_resources_types = args[:supported_deployment_resources_types] if args.key?(:supported_deployment_resources_types)
  @supported_export_formats = args[:supported_export_formats] if args.key?(:supported_export_formats)
  @supported_input_storage_formats = args[:supported_input_storage_formats] if args.key?(:supported_input_storage_formats)
  @supported_output_storage_formats = args[:supported_output_storage_formats] if args.key?(:supported_output_storage_formats)
  @training_pipeline = args[:training_pipeline] if args.key?(:training_pipeline)
  @update_time = args[:update_time] if args.key?(:update_time)
  @version_aliases = args[:version_aliases] if args.key?(:version_aliases)
  @version_create_time = args[:version_create_time] if args.key?(:version_create_time)
  @version_description = args[:version_description] if args.key?(:version_description)
  @version_id = args[:version_id] if args.key?(:version_id)
  @version_update_time = args[:version_update_time] if args.key?(:version_update_time)
end