Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
-
#disable_early_stopping ⇒ Boolean
(also: #disable_early_stopping?)
Use the entire training budget.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision".
-
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall".
-
#prediction_type ⇒ String
The type of prediction the Model is to produce.
-
#target_column ⇒ String
The column name of the target column that the model is to predict.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column.
-
#weight_column_name ⇒ String
Column name that should be used as the weight column.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
18779 18780 18781 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18779 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
Corresponds to the JSON property additionalExperiments
18691 18692 18693 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18691 def additional_experiments @additional_experiments end |
#disable_early_stopping ⇒ Boolean Also known as: disable_early_stopping?
Use the entire training budget. This disables the early stopping feature. By
default, the early stopping feature is enabled, which means that AutoML Tables
might stop training before the entire training budget has been used.
Corresponds to the JSON property disableEarlyStopping
18698 18699 18700 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18698 def disable_early_stopping @disable_early_stopping end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
18704 18705 18706 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18704 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that maximizes/minimizes the value of the objective function
over the validation set. The supported optimization objectives depend on the
prediction type. If the field is not set, a default objective function is used.
classification (binary): "maximize-au-roc" (default) - Maximize the area
under the receiver operating characteristic (ROC) curve. "minimize-log-loss" -
Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-
recall curve. "maximize-precision-at-recall" - Maximize precision for a
specified recall value. "maximize-recall-at-precision" - Maximize recall for a
specified precision value. classification (multi-class): "minimize-log-loss" (
default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize
root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (
MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
Corresponds to the JSON property optimizationObjective
18721 18722 18723 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18721 def optimization_objective @optimization_objective end |
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectivePrecisionValue
18727 18728 18729 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18727 def optimization_objective_precision_value @optimization_objective_precision_value end |
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectiveRecallValue
18733 18734 18735 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18733 def optimization_objective_recall_value @optimization_objective_recall_value end |
#prediction_type ⇒ String
The type of prediction the Model is to produce. "classification" - Predict one
out of multiple target values is picked for each row. "regression" - Predict a
value based on its relation to other values. This type is available only to
columns that contain semantically numeric values, i.e. integers or floating
point number, even if stored as e.g. strings.
Corresponds to the JSON property predictionType
18742 18743 18744 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18742 def prediction_type @prediction_type end |
#target_column ⇒ String
The column name of the target column that the model is to predict.
Corresponds to the JSON property targetColumn
18747 18748 18749 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18747 def target_column @target_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
18760 18761 18762 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18760 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
18768 18769 18770 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18768 def transformations @transformations end |
#weight_column_name ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1.
Corresponds to the JSON property weightColumnName
18777 18778 18779 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18777 def weight_column_name @weight_column_name end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18784 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value) @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value) @prediction_type = args[:prediction_type] if args.key?(:prediction_type) @target_column = args[:target_column] if args.key?(:target_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name) end |