Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionTftForecastingInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionTftForecastingInputs

Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionTftForecastingInputs.



20276
20277
20278
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20276

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the time series forcasting training. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


20125
20126
20127
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20125

def additional_experiments
  @additional_experiments
end

#available_at_forecast_columnsArray<String>

Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day. Corresponds to the JSON property availableAtForecastColumns

Returns:

  • (Array<String>)


20133
20134
20135
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20133

def available_at_forecast_columns
  @available_at_forecast_columns
end

#context_windowFixnum

The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property contextWindow

Returns:

  • (Fixnum)


20140
20141
20142
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20140

def context_window
  @context_window
end

#data_granularityGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionTftForecastingInputsGranularity

A duration of time expressed in time granularity units. Corresponds to the JSON property dataGranularity



20145
20146
20147
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20145

def data_granularity
  @data_granularity
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



20150
20151
20152
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20150

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#forecast_horizonFixnum

The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property forecastHorizon

Returns:

  • (Fixnum)


20157
20158
20159
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20157

def forecast_horizon
  @forecast_horizon
end

#hierarchy_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig

Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies. Corresponds to the JSON property hierarchyConfig



20163
20164
20165
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20163

def hierarchy_config
  @hierarchy_config
end

#holiday_regionsArray<String>

The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date. This option only allowed when data_granularity is day. By default, holiday effect modeling is disabled. To turn it on, specify the holiday region using this option. Corresponds to the JSON property holidayRegions

Returns:

  • (Array<String>)


20172
20173
20174
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20172

def holiday_regions
  @holiday_regions
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" ( default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean- squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * " minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in quantiles. * "minimize-mape" - Minimize the mean absolute percentage error. Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


20187
20188
20189
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20187

def optimization_objective
  @optimization_objective
end

#quantilesArray<Float>

Quantiles to use for minimize-quantile-loss optimization_objective. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize-quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique. Corresponds to the JSON property quantiles

Returns:

  • (Array<Float>)


20195
20196
20197
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20195

def quantiles
  @quantiles
end

#target_columnString

The name of the column that the Model is to predict values for. This column must be unavailable at forecast. Corresponds to the JSON property targetColumn

Returns:

  • (String)


20201
20202
20203
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20201

def target_column
  @target_column
end

#time_columnString

The name of the column that identifies time order in the time series. This column must be available at forecast. Corresponds to the JSON property timeColumn

Returns:

  • (String)


20207
20208
20209
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20207

def time_column
  @time_column
end

#time_series_attribute_columnsArray<String>

Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color. Corresponds to the JSON property timeSeriesAttributeColumns

Returns:

  • (Array<String>)


20214
20215
20216
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20214

def time_series_attribute_columns
  @time_series_attribute_columns
end

#time_series_identifier_columnString

The name of the column that identifies the time series. Corresponds to the JSON property timeSeriesIdentifierColumn

Returns:

  • (String)


20219
20220
20221
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20219

def time_series_identifier_column
  @time_series_identifier_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


20232
20233
20234
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20232

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionTftForecastingInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



20240
20241
20242
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20240

def transformations
  @transformations
end

#unavailable_at_forecast_columnsArray<String>

Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day. Corresponds to the JSON property unavailableAtForecastColumns

Returns:

  • (Array<String>)


20248
20249
20250
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20248

def unavailable_at_forecast_columns
  @unavailable_at_forecast_columns
end

#validation_optionsString

Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue Corresponds to the JSON property validationOptions

Returns:

  • (String)


20256
20257
20258
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20256

def validation_options
  @validation_options
end

#weight_columnString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. This column must be available at forecast. Corresponds to the JSON property weightColumn

Returns:

  • (String)


20265
20266
20267
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20265

def weight_column
  @weight_column
end

#window_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig

Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation. Corresponds to the JSON property windowConfig



20274
20275
20276
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20274

def window_config
  @window_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20281

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns)
  @context_window = args[:context_window] if args.key?(:context_window)
  @data_granularity = args[:data_granularity] if args.key?(:data_granularity)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon)
  @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config)
  @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @quantiles = args[:quantiles] if args.key?(:quantiles)
  @target_column = args[:target_column] if args.key?(:target_column)
  @time_column = args[:time_column] if args.key?(:time_column)
  @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns)
  @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns)
  @validation_options = args[:validation_options] if args.key?(:validation_options)
  @weight_column = args[:weight_column] if args.key?(:weight_column)
  @window_config = args[:window_config] if args.key?(:window_config)
end