Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
-
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
-
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for model training and prediction respectively.
-
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity
A duration of time expressed in time granularity units.
-
#enable_probabilistic_inference ⇒ Boolean
(also: #enable_probabilistic_inference?)
If probabilistic inference is enabled, the model will fit a distribution that captures the uncertainty of a prediction.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target are returned.
-
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies.
-
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss
optimization_objective, or for probabilistic inference. -
#target_column ⇒ String
The name of the column that the Model is to predict values for.
-
#time_column ⇒ String
The name of the column that identifies time order in the time series.
-
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns.
-
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation>
Each transformation will apply transform function to given input column.
-
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested.
-
#validation_options ⇒ String
Validation options for the data validation component.
-
#weight_column ⇒ String
Column name that should be used as the weight column.
-
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time series training.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputs.
18900 18901 18902 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18900 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
Corresponds to the JSON property additionalExperiments
18736 18737 18738 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18736 def additional_experiments @additional_experiments end |
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
These columns contain information for the given entity (identified by the
time_series_identifier_column column) that is known at forecast. For example,
predicted weather for a specific day.
Corresponds to the JSON property availableAtForecastColumns
18744 18745 18746 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18744 def available_at_forecast_columns @available_at_forecast_columns end |
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for
model training and prediction respectively. Expressed in number of units
defined by the data_granularity field.
Corresponds to the JSON property contextWindow
18751 18752 18753 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18751 def context_window @context_window end |
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity
A duration of time expressed in time granularity units.
Corresponds to the JSON property dataGranularity
18756 18757 18758 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18756 def data_granularity @data_granularity end |
#enable_probabilistic_inference ⇒ Boolean Also known as: enable_probabilistic_inference?
If probabilistic inference is enabled, the model will fit a distribution that
captures the uncertainty of a prediction. At inference time, the predictive
distribution is used to make a point prediction that minimizes the
optimization objective. For example, the mean of a predictive distribution is
the point prediction that minimizes RMSE loss. If quantiles are specified,
then the quantiles of the distribution are also returned. The optimization
objective cannot be minimize-quantile-loss.
Corresponds to the JSON property enableProbabilisticInference
18767 18768 18769 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18767 def enable_probabilistic_inference @enable_probabilistic_inference end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
18773 18774 18775 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18773 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target
are returned. Expressed in number of units defined by the data_granularity
field.
Corresponds to the JSON property forecastHorizon
18780 18781 18782 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18780 def forecast_horizon @forecast_horizon end |
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and
parameters for hierarchical forecasting strategies.
Corresponds to the JSON property hierarchyConfig
18786 18787 18788 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18786 def hierarchy_config @hierarchy_config end |
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in
modeling by adding holiday categorical array feature that include all holidays
matching the date. This option only allowed when data_granularity is day. By
default, holiday effect modeling is disabled. To turn it on, specify the
holiday region using this option.
Corresponds to the JSON property holidayRegions
18795 18796 18797 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18795 def holiday_regions @holiday_regions end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that optimizes the value of the objective function over the
validation set. The supported optimization objectives: * "minimize-rmse" (
default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" -
Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-
squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared
percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of
weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "
minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined
in quantiles. * "minimize-mape" - Minimize the mean absolute percentage
error.
Corresponds to the JSON property optimizationObjective
18810 18811 18812 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18810 def optimization_objective @optimization_objective end |
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss optimization_objective, or for
probabilistic inference. Up to 5 quantiles are allowed of values between 0 and
1, exclusive. Required if the value of optimization_objective is minimize-
quantile-loss. Represents the percent quantiles to use for that objective.
Quantiles must be unique.
Corresponds to the JSON property quantiles
18819 18820 18821 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18819 def quantiles @quantiles end |
#target_column ⇒ String
The name of the column that the Model is to predict values for. This column
must be unavailable at forecast.
Corresponds to the JSON property targetColumn
18825 18826 18827 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18825 def target_column @target_column end |
#time_column ⇒ String
The name of the column that identifies time order in the time series. This
column must be available at forecast.
Corresponds to the JSON property timeColumn
18831 18832 18833 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18831 def time_column @time_column end |
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns. The value of these
columns does not vary as a function of time. For example, store ID or item
color.
Corresponds to the JSON property timeSeriesAttributeColumns
18838 18839 18840 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18838 def time_series_attribute_columns @time_series_attribute_columns end |
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
Corresponds to the JSON property timeSeriesIdentifierColumn
18843 18844 18845 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18843 def time_series_identifier_column @time_series_identifier_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
18856 18857 18858 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18856 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
18864 18865 18866 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18864 def transformations @transformations end |
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested. This
column contains information for the given entity (identified by the
time_series_identifier_column) that is unknown before the forecast For example,
actual weather on a given day.
Corresponds to the JSON property unavailableAtForecastColumns
18872 18873 18874 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18872 def unavailable_at_forecast_columns @unavailable_at_forecast_columns end |
#validation_options ⇒ String
Validation options for the data validation component. The available options
are: * "fail-pipeline" - default, will validate against the validation and
fail the pipeline if it fails. * "ignore-validation" - ignore the results of
the validation and continue
Corresponds to the JSON property validationOptions
18880 18881 18882 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18880 def @validation_options end |
#weight_column ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1.
Corresponds to the JSON property weightColumn
18889 18890 18891 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18889 def weight_column @weight_column end |
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time
series training. A window is a series of rows that comprise the context up to
the time of prediction, and the horizon following. The corresponding row for
each window marks the start of the forecast horizon. Each window is used as an
input example for training/evaluation.
Corresponds to the JSON property windowConfig
18898 18899 18900 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18898 def window_config @window_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 18905 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns) @context_window = args[:context_window] if args.key?(:context_window) @data_granularity = args[:data_granularity] if args.key?(:data_granularity) @enable_probabilistic_inference = args[:enable_probabilistic_inference] if args.key?(:enable_probabilistic_inference) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon) @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config) @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @quantiles = args[:quantiles] if args.key?(:quantiles) @target_column = args[:target_column] if args.key?(:target_column) @time_column = args[:time_column] if args.key?(:time_column) @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns) @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns) @validation_options = args[:validation_options] if args.key?(:validation_options) @weight_column = args[:weight_column] if args.key?(:weight_column) @window_config = args[:window_config] if args.key?(:window_config) end |