Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
-
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
-
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for model training and prediction respectively.
-
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsGranularity
A duration of time expressed in time granularity units.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target are returned.
-
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies.
-
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss
optimization_objective. -
#target_column ⇒ String
The name of the column that the Model is to predict values for.
-
#time_column ⇒ String
The name of the column that identifies time order in the time series.
-
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns.
-
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation>
Each transformation will apply transform function to given input column.
-
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested.
-
#validation_options ⇒ String
Validation options for the data validation component.
-
#weight_column ⇒ String
Column name that should be used as the weight column.
-
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time series training.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputs.
20682 20683 20684 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20682 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the time series forcasting training.
Corresponds to the JSON property additionalExperiments
20531 20532 20533 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20531 def additional_experiments @additional_experiments end |
#available_at_forecast_columns ⇒ Array<String>
Names of columns that are available and provided when a forecast is requested.
These columns contain information for the given entity (identified by the
time_series_identifier_column column) that is known at forecast. For example,
predicted weather for a specific day.
Corresponds to the JSON property availableAtForecastColumns
20539 20540 20541 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20539 def available_at_forecast_columns @available_at_forecast_columns end |
#context_window ⇒ Fixnum
The amount of time into the past training and prediction data is used for
model training and prediction respectively. Expressed in number of units
defined by the data_granularity field.
Corresponds to the JSON property contextWindow
20546 20547 20548 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20546 def context_window @context_window end |
#data_granularity ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsGranularity
A duration of time expressed in time granularity units.
Corresponds to the JSON property dataGranularity
20551 20552 20553 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20551 def data_granularity @data_granularity end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
20556 20557 20558 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20556 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#forecast_horizon ⇒ Fixnum
The amount of time into the future for which forecasted values for the target
are returned. Expressed in number of units defined by the data_granularity
field.
Corresponds to the JSON property forecastHorizon
20563 20564 20565 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20563 def forecast_horizon @forecast_horizon end |
#hierarchy_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionHierarchyConfig
Configuration that defines the hierarchical relationship of time series and
parameters for hierarchical forecasting strategies.
Corresponds to the JSON property hierarchyConfig
20569 20570 20571 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20569 def hierarchy_config @hierarchy_config end |
#holiday_regions ⇒ Array<String>
The geographical region based on which the holiday effect is applied in
modeling by adding holiday categorical array feature that include all holidays
matching the date. This option only allowed when data_granularity is day. By
default, holiday effect modeling is disabled. To turn it on, specify the
holiday region using this option.
Corresponds to the JSON property holidayRegions
20578 20579 20580 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20578 def holiday_regions @holiday_regions end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that optimizes the value of the objective function over the
validation set. The supported optimization objectives: * "minimize-rmse" (
default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" -
Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean-
squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared
percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of
weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * "
minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined
in quantiles. * "minimize-mape" - Minimize the mean absolute percentage
error.
Corresponds to the JSON property optimizationObjective
20593 20594 20595 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20593 def optimization_objective @optimization_objective end |
#quantiles ⇒ Array<Float>
Quantiles to use for minimize-quantile-loss optimization_objective. Up to 5
quantiles are allowed of values between 0 and 1, exclusive. Required if the
value of optimization_objective is minimize-quantile-loss. Represents the
percent quantiles to use for that objective. Quantiles must be unique.
Corresponds to the JSON property quantiles
20601 20602 20603 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20601 def quantiles @quantiles end |
#target_column ⇒ String
The name of the column that the Model is to predict values for. This column
must be unavailable at forecast.
Corresponds to the JSON property targetColumn
20607 20608 20609 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20607 def target_column @target_column end |
#time_column ⇒ String
The name of the column that identifies time order in the time series. This
column must be available at forecast.
Corresponds to the JSON property timeColumn
20613 20614 20615 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20613 def time_column @time_column end |
#time_series_attribute_columns ⇒ Array<String>
Column names that should be used as attribute columns. The value of these
columns does not vary as a function of time. For example, store ID or item
color.
Corresponds to the JSON property timeSeriesAttributeColumns
20620 20621 20622 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20620 def time_series_attribute_columns @time_series_attribute_columns end |
#time_series_identifier_column ⇒ String
The name of the column that identifies the time series.
Corresponds to the JSON property timeSeriesIdentifierColumn
20625 20626 20627 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20625 def time_series_identifier_column @time_series_identifier_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
20638 20639 20640 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20638 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionSeq2SeqPlusForecastingInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
20646 20647 20648 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20646 def transformations @transformations end |
#unavailable_at_forecast_columns ⇒ Array<String>
Names of columns that are unavailable when a forecast is requested. This
column contains information for the given entity (identified by the
time_series_identifier_column) that is unknown before the forecast For example,
actual weather on a given day.
Corresponds to the JSON property unavailableAtForecastColumns
20654 20655 20656 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20654 def unavailable_at_forecast_columns @unavailable_at_forecast_columns end |
#validation_options ⇒ String
Validation options for the data validation component. The available options
are: * "fail-pipeline" - default, will validate against the validation and
fail the pipeline if it fails. * "ignore-validation" - ignore the results of
the validation and continue
Corresponds to the JSON property validationOptions
20662 20663 20664 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20662 def @validation_options end |
#weight_column ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1. This column must be available at forecast.
Corresponds to the JSON property weightColumn
20671 20672 20673 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20671 def weight_column @weight_column end |
#window_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionWindowConfig
Config that contains the strategy used to generate sliding windows in time
series training. A window is a series of rows that comprise the context up to
the time of prediction, and the horizon following. The corresponding row for
each window marks the start of the forecast horizon. Each window is used as an
input example for training/evaluation.
Corresponds to the JSON property windowConfig
20680 20681 20682 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20680 def window_config @window_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20687 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns) @context_window = args[:context_window] if args.key?(:context_window) @data_granularity = args[:data_granularity] if args.key?(:data_granularity) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon) @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config) @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @quantiles = args[:quantiles] if args.key?(:quantiles) @target_column = args[:target_column] if args.key?(:target_column) @time_column = args[:time_column] if args.key?(:time_column) @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns) @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns) @validation_options = args[:validation_options] if args.key?(:validation_options) @weight_column = args[:weight_column] if args.key?(:weight_column) @window_config = args[:window_config] if args.key?(:window_config) end |