Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metrics for regression evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsRegressionEvaluationMetrics.
17356 17357 17358 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17356 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
17331 17332 17333 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17331 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
17337 17338 17339 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17337 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
17343 17344 17345 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17343 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
17348 17349 17350 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17348 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
17354 17355 17356 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17354 def root_mean_squared_log_error @root_mean_squared_log_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17361 17362 17363 17364 17365 17366 17367 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17361 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) end |