Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
-
#disable_early_stopping ⇒ Boolean
(also: #disable_early_stopping?)
Use the entire training budget.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision".
-
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall".
-
#prediction_type ⇒ String
The type of prediction the Model is to produce.
-
#target_column ⇒ String
The column name of the target column that the model is to predict.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column.
-
#weight_column_name ⇒ String
Column name that should be used as the weight column.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
20412 20413 20414 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20412 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
Corresponds to the JSON property additionalExperiments
20324 20325 20326 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20324 def additional_experiments @additional_experiments end |
#disable_early_stopping ⇒ Boolean Also known as: disable_early_stopping?
Use the entire training budget. This disables the early stopping feature. By
default, the early stopping feature is enabled, which means that AutoML Tables
might stop training before the entire training budget has been used.
Corresponds to the JSON property disableEarlyStopping
20331 20332 20333 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20331 def disable_early_stopping @disable_early_stopping end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
20337 20338 20339 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20337 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that maximizes/minimizes the value of the objective function
over the validation set. The supported optimization objectives depend on the
prediction type. If the field is not set, a default objective function is used.
classification (binary): "maximize-au-roc" (default) - Maximize the area
under the receiver operating characteristic (ROC) curve. "minimize-log-loss" -
Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-
recall curve. "maximize-precision-at-recall" - Maximize precision for a
specified recall value. "maximize-recall-at-precision" - Maximize recall for a
specified precision value. classification (multi-class): "minimize-log-loss" (
default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize
root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (
MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
Corresponds to the JSON property optimizationObjective
20354 20355 20356 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20354 def optimization_objective @optimization_objective end |
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectivePrecisionValue
20360 20361 20362 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20360 def optimization_objective_precision_value @optimization_objective_precision_value end |
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectiveRecallValue
20366 20367 20368 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20366 def optimization_objective_recall_value @optimization_objective_recall_value end |
#prediction_type ⇒ String
The type of prediction the Model is to produce. "classification" - Predict one
out of multiple target values is picked for each row. "regression" - Predict a
value based on its relation to other values. This type is available only to
columns that contain semantically numeric values, i.e. integers or floating
point number, even if stored as e.g. strings.
Corresponds to the JSON property predictionType
20375 20376 20377 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20375 def prediction_type @prediction_type end |
#target_column ⇒ String
The column name of the target column that the model is to predict.
Corresponds to the JSON property targetColumn
20380 20381 20382 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20380 def target_column @target_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
20393 20394 20395 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20393 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
20401 20402 20403 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20401 def transformations @transformations end |
#weight_column_name ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1.
Corresponds to the JSON property weightColumnName
20410 20411 20412 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20410 def weight_column_name @weight_column_name end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 20417 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value) @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value) @prediction_type = args[:prediction_type] if args.key?(:prediction_type) @target_column = args[:target_column] if args.key?(:target_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name) end |