Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1XraiAttribution

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906. 02825 Supported only by image Models.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1XraiAttribution

Returns a new instance of GoogleCloudAiplatformV1XraiAttribution.



25790
25791
25792
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25790

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#blur_baseline_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1BlurBaselineConfig

Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 Corresponds to the JSON property blurBaselineConfig



25772
25773
25774
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25772

def blur_baseline_config
  @blur_baseline_config
end

#smooth_grad_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SmoothGradConfig

Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf Corresponds to the JSON property smoothGradConfig



25780
25781
25782
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25780

def smooth_grad_config
  @smooth_grad_config
end

#step_countFixnum

Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively. Corresponds to the JSON property stepCount

Returns:

  • (Fixnum)


25788
25789
25790
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25788

def step_count
  @step_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



25795
25796
25797
25798
25799
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 25795

def update!(**args)
  @blur_baseline_config = args[:blur_baseline_config] if args.key?(:blur_baseline_config)
  @smooth_grad_config = args[:smooth_grad_config] if args.key?(:smooth_grad_config)
  @step_count = args[:step_count] if args.key?(:step_count)
end