Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.
Instance Attribute Summary collapse
-
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse representation.
-
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor.
-
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor.
-
#encoding ⇒ String
Defines how the feature is encoded into the input tensor.
-
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value.
-
#group_name ⇒ String
Name of the group that the input belongs to.
-
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor.
-
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor.
-
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature.
-
#input_tensor_name ⇒ String
Name of the input tensor for this feature.
-
#modality ⇒ String
Modality of the feature.
-
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
constructor
A new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Returns a new instance of GoogleCloudAiplatformV1ExplanationMetadataInputMetadata.
6416 6417 6418 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6416 def initialize(**args) update!(**args) end |
Instance Attribute Details
#dense_shape_tensor_name ⇒ String
Specifies the shape of the values of the input if the input is a sparse
representation. Refer to Tensorflow documentation for more details: https://
www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property denseShapeTensorName
6329 6330 6331 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6329 def dense_shape_tensor_name @dense_shape_tensor_name end |
#encoded_baselines ⇒ Array<Object>
A list of baselines for the encoded tensor. The shape of each baseline should
match the shape of the encoded tensor. If a scalar is provided, Vertex AI
broadcasts to the same shape as the encoded tensor.
Corresponds to the JSON property encodedBaselines
6336 6337 6338 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6336 def encoded_baselines @encoded_baselines end |
#encoded_tensor_name ⇒ String
Encoded tensor is a transformation of the input tensor. Must be provided if
choosing Integrated Gradients attribution or XRAI attribution and the input
tensor is not differentiable. An encoded tensor is generated if the input
tensor is encoded by a lookup table.
Corresponds to the JSON property encodedTensorName
6344 6345 6346 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6344 def encoded_tensor_name @encoded_tensor_name end |
#encoding ⇒ String
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
Corresponds to the JSON property encoding
6349 6350 6351 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6349 def encoding @encoding end |
#feature_value_domain ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain
Domain details of the input feature value. Provides numeric information about
the feature, such as its range (min, max). If the feature has been pre-
processed, for example with z-scoring, then it provides information about how
to recover the original feature. For example, if the input feature is an image
and it has been pre-processed to obtain 0-mean and stddev = 1 values, then
original_mean, and original_stddev refer to the mean and stddev of the
original feature (e.g. image tensor) from which input feature (with mean = 0
and stddev = 1) was obtained.
Corresponds to the JSON property featureValueDomain
6361 6362 6363 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6361 def feature_value_domain @feature_value_domain end |
#group_name ⇒ String
Name of the group that the input belongs to. Features with the same group name
will be treated as one feature when computing attributions. Features grouped
together can have different shapes in value. If provided, there will be one
single attribution generated in Attribution.feature_attributions, keyed by the
group name.
Corresponds to the JSON property groupName
6370 6371 6372 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6370 def group_name @group_name end |
#index_feature_mapping ⇒ Array<String>
A list of feature names for each index in the input tensor. Required when the
input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE,
INDICATOR.
Corresponds to the JSON property indexFeatureMapping
6377 6378 6379 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6377 def index_feature_mapping @index_feature_mapping end |
#indices_tensor_name ⇒ String
Specifies the index of the values of the input tensor. Required when the input
tensor is a sparse representation. Refer to Tensorflow documentation for more
details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Corresponds to the JSON property indicesTensorName
6384 6385 6386 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6384 def indices_tensor_name @indices_tensor_name end |
#input_baselines ⇒ Array<Object>
Baseline inputs for this feature. If no baseline is specified, Vertex AI
chooses the baseline for this feature. If multiple baselines are specified,
Vertex AI returns the average attributions across them in Attribution.
feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.
x), the shape of each baseline must match the shape of the input tensor. If a
scalar is provided, we broadcast to the same shape as the input tensor. For
custom images, the element of the baselines must be in the same format as the
feature's input in the instance[]. The schema of any single instance may be
specified via Endpoint's DeployedModels' Model's PredictSchemata's
instance_schema_uri.
Corresponds to the JSON property inputBaselines
6398 6399 6400 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6398 def input_baselines @input_baselines end |
#input_tensor_name ⇒ String
Name of the input tensor for this feature. Required and is only applicable to
Vertex AI-provided images for Tensorflow.
Corresponds to the JSON property inputTensorName
6404 6405 6406 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6404 def input_tensor_name @input_tensor_name end |
#modality ⇒ String
Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
Corresponds to the JSON property modality
6409 6410 6411 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6409 def modality @modality end |
#visualization ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization
Visualization configurations for image explanation.
Corresponds to the JSON property visualization
6414 6415 6416 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6414 def visualization @visualization end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 6421 def update!(**args) @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name) @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines) @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name) @encoding = args[:encoding] if args.key?(:encoding) @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain) @group_name = args[:group_name] if args.key?(:group_name) @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping) @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name) @input_baselines = args[:input_baselines] if args.key?(:input_baselines) @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name) @modality = args[:modality] if args.key?(:modality) @visualization = args[:visualization] if args.key?(:visualization) end |