Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Overview

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob

Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.



12734
12735
12736
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12734

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#analysis_instance_schema_uriString

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/ response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string. Corresponds to the JSON property analysisInstanceSchemaUri

Returns:

  • (String)


12589
12590
12591
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12589

def analysis_instance_schema_uri
  @analysis_instance_schema_uri
end

#bigquery_tablesArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum: 1. Training data logging predict request/response 2. Serving data logging predict request/response Corresponds to the JSON property bigqueryTables



12597
12598
12599
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12597

def bigquery_tables
  @bigquery_tables
end

#create_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was created. Corresponds to the JSON property createTime

Returns:

  • (String)


12602
12603
12604
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12602

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property displayName

Returns:

  • (String)


12609
12610
12611
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12609

def display_name
  @display_name
end

#enable_monitoring_pipeline_logsBoolean Also known as: enable_monitoring_pipeline_logs?

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing. Corresponds to the JSON property enableMonitoringPipelineLogs

Returns:

  • (Boolean)


12617
12618
12619
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12617

def enable_monitoring_pipeline_logs
  @enable_monitoring_pipeline_logs
end

#encryption_specGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



12624
12625
12626
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12624

def encryption_spec
  @encryption_spec
end

#endpointString

Required. Endpoint resource name. Format: projects/project/locations/ location/endpoints/endpoint` Corresponds to the JSON propertyendpoint`

Returns:

  • (String)


12630
12631
12632
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12630

def endpoint
  @endpoint
end

#errorGoogle::Apis::AiplatformV1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



12640
12641
12642
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12640

def error
  @error
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


12649
12650
12651
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12649

def labels
  @labels
end

#latest_monitoring_pipeline_metadataGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata

All metadata of most recent monitoring pipelines. Corresponds to the JSON property latestMonitoringPipelineMetadata



12654
12655
12656
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12654

def 
  @latest_monitoring_pipeline_metadata
end

#log_ttlString

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second: 3600 indicates ttl = 1 day. Corresponds to the JSON property logTtl

Returns:

  • (String)


12661
12662
12663
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12661

def log_ttl
  @log_ttl
end

#logging_sampling_strategyGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy

Sampling Strategy for logging, can be for both training and prediction dataset. Corresponds to the JSON property loggingSamplingStrategy



12666
12667
12668
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12666

def logging_sampling_strategy
  @logging_sampling_strategy
end

#model_deployment_monitoring_objective_configsArray<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately. Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs



12672
12673
12674
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12672

def model_deployment_monitoring_objective_configs
  @model_deployment_monitoring_objective_configs
end

#model_deployment_monitoring_schedule_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig

The config for scheduling monitoring job. Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig



12677
12678
12679
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12677

def model_deployment_monitoring_schedule_config
  @model_deployment_monitoring_schedule_config
end

#model_monitoring_alert_configGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig

Alert config for model monitoring. Corresponds to the JSON property modelMonitoringAlertConfig



12682
12683
12684
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12682

def model_monitoring_alert_config
  @model_monitoring_alert_config
end

#nameString

Output only. Resource name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property name

Returns:

  • (String)


12687
12688
12689
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12687

def name
  @name
end

#next_schedule_timeString

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round. Corresponds to the JSON property nextScheduleTime

Returns:

  • (String)


12693
12694
12695
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12693

def next_schedule_time
  @next_schedule_time
end

#predict_instance_schema_uriString

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property predictInstanceSchemaUri

Returns:

  • (String)


12700
12701
12702
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12700

def predict_instance_schema_uri
  @predict_instance_schema_uri
end

#sample_predict_instanceObject

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob. predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property samplePredictInstance

Returns:

  • (Object)


12708
12709
12710
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12708

def sample_predict_instance
  @sample_predict_instance
end

#schedule_stateString

Output only. Schedule state when the monitoring job is in Running state. Corresponds to the JSON property scheduleState

Returns:

  • (String)


12713
12714
12715
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12713

def schedule_state
  @schedule_state
end

#stateString

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'. Corresponds to the JSON property state

Returns:

  • (String)


12721
12722
12723
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12721

def state
  @state
end

#stats_anomalies_base_directoryGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination

The Google Cloud Storage location where the output is to be written to. Corresponds to the JSON property statsAnomaliesBaseDirectory



12726
12727
12728
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12726

def stats_anomalies_base_directory
  @stats_anomalies_base_directory
end

#update_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. Corresponds to the JSON property updateTime

Returns:

  • (String)


12732
12733
12734
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12732

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12739

def update!(**args)
  @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri)
  @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @endpoint = args[:endpoint] if args.key?(:endpoint)
  @error = args[:error] if args.key?(:error)
  @labels = args[:labels] if args.key?(:labels)
  @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata)
  @log_ttl = args[:log_ttl] if args.key?(:log_ttl)
  @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy)
  @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs)
  @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config)
  @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config)
  @name = args[:name] if args.key?(:name)
  @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time)
  @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri)
  @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance)
  @schedule_state = args[:schedule_state] if args.key?(:schedule_state)
  @state = args[:state] if args.key?(:state)
  @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory)
  @update_time = args[:update_time] if args.key?(:update_time)
end