Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only.
-
#create_time ⇒ String
Output only.
-
#display_name ⇒ String
Required.
-
#enable_monitoring_pipeline_logs ⇒ Boolean
(also: #enable_monitoring_pipeline_logs?)
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#endpoint ⇒ String
Required.
-
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The
Statustype defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. -
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
-
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
-
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
-
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
Alert config for model monitoring.
-
#name ⇒ String
Output only.
-
#next_schedule_time ⇒ String
Output only.
-
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.
-
#schedule_state ⇒ String
Output only.
-
#state ⇒ String
Output only.
-
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
-
#update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
constructor
A new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1ModelDeploymentMonitoringJob
Returns a new instance of GoogleCloudAiplatformV1ModelDeploymentMonitoringJob.
12734 12735 12736 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12734 def initialize(**args) update!(**args) end |
Instance Attribute Details
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want
Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the
feature data types are inferred from predict_instance_schema_uri, meaning that
TFDV will use the data in the exact format(data type) as prediction request/
response. If there are any data type differences between predict instance and
TFDV instance, this field can be used to override the schema. For models
trained with Vertex AI, this field must be set as all the fields in predict
instance formatted as string.
Corresponds to the JSON property analysisInstanceSchemaUri
12589 12590 12591 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12589 def analysis_instance_schema_uri @analysis_instance_schema_uri end |
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringBigQueryTable>
Output only. The created bigquery tables for the job under customer project.
Customer could do their own query & analysis. There could be 4 log tables in
maximum: 1. Training data logging predict request/response 2. Serving data
logging predict request/response
Corresponds to the JSON property bigqueryTables
12597 12598 12599 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12597 def bigquery_tables @bigquery_tables end |
#create_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
Corresponds to the JSON property createTime
12602 12603 12604 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12602 def create_time @create_time end |
#display_name ⇒ String
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name
can be up to 128 characters long and can consist of any UTF-8 characters.
Display name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property displayName
12609 12610 12611 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12609 def display_name @display_name end |
#enable_monitoring_pipeline_logs ⇒ Boolean Also known as: enable_monitoring_pipeline_logs?
If true, the scheduled monitoring pipeline logs are sent to Google Cloud
Logging, including pipeline status and anomalies detected. Please note the
logs incur cost, which are subject to Cloud Logging pricing.
Corresponds to the JSON property enableMonitoringPipelineLogs
12617 12618 12619 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12617 def enable_monitoring_pipeline_logs @enable_monitoring_pipeline_logs end |
#encryption_spec ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
12624 12625 12626 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12624 def encryption_spec @encryption_spec end |
#endpoint ⇒ String
Required. Endpoint resource name. Format: projects/project/locations/
location/endpoints/endpoint`
Corresponds to the JSON propertyendpoint`
12630 12631 12632 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12630 def endpoint @endpoint end |
#error ⇒ Google::Apis::AiplatformV1::GoogleRpcStatus
The Status type defines a logical error model that is suitable for different
programming environments, including REST APIs and RPC APIs. It is used by
gRPC. Each Status message contains three pieces of
data: error code, error message, and error details. You can find out more
about this error model and how to work with it in the API Design Guide.
Corresponds to the JSON property error
12640 12641 12642 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12640 def error @error end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your
ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64
characters (Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed. See
https://goo.gl/xmQnxf for more information and examples of labels.
Corresponds to the JSON property labels
12649 12650 12651 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12649 def labels @labels end |
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
Corresponds to the JSON property latestMonitoringPipelineMetadata
12654 12655 12656 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12654 def @latest_monitoring_pipeline_metadata end |
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs. A day is the
basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second:
3600 indicates ttl = 1 day.
Corresponds to the JSON property logTtl
12661 12662 12663 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12661 def log_ttl @log_ttl end |
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
Corresponds to the JSON property loggingSamplingStrategy
12666 12667 12668 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12666 def logging_sampling_strategy @logging_sampling_strategy end |
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringObjectiveConfig>
Required. The config for monitoring objectives. This is a per DeployedModel
config. Each DeployedModel needs to be configured separately.
Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs
12672 12673 12674 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12672 def model_deployment_monitoring_objective_configs @model_deployment_monitoring_objective_configs end |
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig
12677 12678 12679 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12677 def model_deployment_monitoring_schedule_config @model_deployment_monitoring_schedule_config end |
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1ModelMonitoringAlertConfig
Alert config for model monitoring.
Corresponds to the JSON property modelMonitoringAlertConfig
12682 12683 12684 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12682 def model_monitoring_alert_config @model_monitoring_alert_config end |
#name ⇒ String
Output only. Resource name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property name
12687 12688 12689 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12687 def name @name end |
#next_schedule_time ⇒ String
Output only. Timestamp when this monitoring pipeline will be scheduled to run
for the next round.
Corresponds to the JSON property nextScheduleTime
12693 12694 12695 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12693 def next_schedule_time @next_schedule_time end |
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are
given to format this Endpoint's prediction (and explanation). If not set, we
will generate predict schema from collected predict requests.
Corresponds to the JSON property predictInstanceSchemaUri
12700 12701 12702 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12700 def predict_instance_schema_uri @predict_instance_schema_uri end |
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be
set as a replacement of ModelDeploymentMonitoringJob.
predict_instance_schema_uri. If not set, we will generate predict schema from
collected predict requests.
Corresponds to the JSON property samplePredictInstance
12708 12709 12710 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12708 def sample_predict_instance @sample_predict_instance end |
#schedule_state ⇒ String
Output only. Schedule state when the monitoring job is in Running state.
Corresponds to the JSON property scheduleState
12713 12714 12715 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12713 def schedule_state @schedule_state end |
#state ⇒ String
Output only. The detailed state of the monitoring job. When the job is still
creating, the state will be 'PENDING'. Once the job is successfully created,
the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume
the job, the state will return to 'RUNNING'.
Corresponds to the JSON property state
12721 12722 12723 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12721 def state @state end |
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1GcsDestination
The Google Cloud Storage location where the output is to be written to.
Corresponds to the JSON property statsAnomaliesBaseDirectory
12726 12727 12728 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12726 def stats_anomalies_base_directory @stats_anomalies_base_directory end |
#update_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most
recently.
Corresponds to the JSON property updateTime
12732 12733 12734 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12732 def update_time @update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 12739 def update!(**args) @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri) @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables) @create_time = args[:create_time] if args.key?(:create_time) @display_name = args[:display_name] if args.key?(:display_name) @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @endpoint = args[:endpoint] if args.key?(:endpoint) @error = args[:error] if args.key?(:error) @labels = args[:labels] if args.key?(:labels) @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata) @log_ttl = args[:log_ttl] if args.key?(:log_ttl) @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy) @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs) @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config) @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config) @name = args[:name] if args.key?(:name) @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time) @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri) @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance) @schedule_state = args[:schedule_state] if args.key?(:schedule_state) @state = args[:state] if args.key?(:state) @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory) @update_time = args[:update_time] if args.key?(:update_time) end |