Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics

Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.



17832
17833
17834
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17832

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#confidence_thresholdFloat

Metrics are computed with an assumption that the Model never returns predictions with score lower than this value. Corresponds to the JSON property confidenceThreshold

Returns:

  • (Float)


17741
17742
17743
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17741

def confidence_threshold
  @confidence_threshold
end

#confusion_matrixGoogle::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix

Confusion matrix of the evaluation for this confidence_threshold. Corresponds to the JSON property confusionMatrix



17746
17747
17748
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17746

def confusion_matrix
  @confusion_matrix
end

#f1_scoreFloat

The harmonic mean of recall and precision. For summary metrics, it computes the micro-averaged F1 score. Corresponds to the JSON property f1Score

Returns:

  • (Float)


17752
17753
17754
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17752

def f1_score
  @f1_score
end

#f1_score_at1Float

The harmonic mean of recallAt1 and precisionAt1. Corresponds to the JSON property f1ScoreAt1

Returns:

  • (Float)


17757
17758
17759
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17757

def f1_score_at1
  @f1_score_at1
end

#f1_score_macroFloat

Macro-averaged F1 Score. Corresponds to the JSON property f1ScoreMacro

Returns:

  • (Float)


17762
17763
17764
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17762

def f1_score_macro
  @f1_score_macro
end

#f1_score_microFloat

Micro-averaged F1 Score. Corresponds to the JSON property f1ScoreMicro

Returns:

  • (Float)


17767
17768
17769
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17767

def f1_score_micro
  @f1_score_micro
end

#false_negative_countFixnum

The number of ground truth labels that are not matched by a Model created label. Corresponds to the JSON property falseNegativeCount

Returns:

  • (Fixnum)


17773
17774
17775
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17773

def false_negative_count
  @false_negative_count
end

#false_positive_countFixnum

The number of Model created labels that do not match a ground truth label. Corresponds to the JSON property falsePositiveCount

Returns:

  • (Fixnum)


17778
17779
17780
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17778

def false_positive_count
  @false_positive_count
end

#false_positive_rateFloat

False Positive Rate for the given confidence threshold. Corresponds to the JSON property falsePositiveRate

Returns:

  • (Float)


17783
17784
17785
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17783

def false_positive_rate
  @false_positive_rate
end

#false_positive_rate_at1Float

The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property falsePositiveRateAt1

Returns:

  • (Float)


17789
17790
17791
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17789

def false_positive_rate_at1
  @false_positive_rate_at1
end

#max_predictionsFixnum

Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidenceThreshold. Corresponds to the JSON property maxPredictions

Returns:

  • (Fixnum)


17796
17797
17798
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17796

def max_predictions
  @max_predictions
end

#precisionFloat

Precision for the given confidence threshold. Corresponds to the JSON property precision

Returns:

  • (Float)


17801
17802
17803
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17801

def precision
  @precision
end

#precision_at1Float

The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property precisionAt1

Returns:

  • (Float)


17807
17808
17809
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17807

def precision_at1
  @precision_at1
end

#recallFloat

Recall (True Positive Rate) for the given confidence threshold. Corresponds to the JSON property recall

Returns:

  • (Float)


17812
17813
17814
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17812

def recall
  @recall
end

#recall_at1Float

The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem. Corresponds to the JSON property recallAt1

Returns:

  • (Float)


17819
17820
17821
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17819

def recall_at1
  @recall_at1
end

#true_negative_countFixnum

The number of labels that were not created by the Model, but if they would, they would not match a ground truth label. Corresponds to the JSON property trueNegativeCount

Returns:

  • (Fixnum)


17825
17826
17827
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17825

def true_negative_count
  @true_negative_count
end

#true_positive_countFixnum

The number of Model created labels that match a ground truth label. Corresponds to the JSON property truePositiveCount

Returns:

  • (Fixnum)


17830
17831
17832
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17830

def true_positive_count
  @true_positive_count
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17837

def update!(**args)
  @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold)
  @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix)
  @f1_score = args[:f1_score] if args.key?(:f1_score)
  @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1)
  @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro)
  @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro)
  @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count)
  @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count)
  @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate)
  @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1)
  @max_predictions = args[:max_predictions] if args.key?(:max_predictions)
  @precision = args[:precision] if args.key?(:precision)
  @precision_at1 = args[:precision_at1] if args.key?(:precision_at1)
  @recall = args[:recall] if args.key?(:recall)
  @recall_at1 = args[:recall_at1] if args.key?(:recall_at1)
  @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count)
  @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count)
end