Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
-
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
-
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created label.
-
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the
confidenceThreshold. -
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
constructor
A new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Returns a new instance of GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
17832 17833 17834 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17832 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
17741 17742 17743 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17741 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
Corresponds to the JSON property confusionMatrix
17746 17747 17748 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17746 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision. For summary metrics, it computes
the micro-averaged F1 score.
Corresponds to the JSON property f1Score
17752 17753 17754 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17752 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
Corresponds to the JSON property f1ScoreAt1
17757 17758 17759 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17757 def f1_score_at1 @f1_score_at1 end |
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMacro
17762 17763 17764 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17762 def f1_score_macro @f1_score_macro end |
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMicro
17767 17768 17769 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17767 def f1_score_micro @f1_score_micro end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created
label.
Corresponds to the JSON property falseNegativeCount
17773 17774 17775 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17773 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
17778 17779 17780 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17778 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
17783 17784 17785 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17783 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property falsePositiveRateAt1
17789 17790 17791 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17789 def false_positive_rate_at1 @false_positive_rate_at1 end |
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidenceThreshold.
Corresponds to the JSON property maxPredictions
17796 17797 17798 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17796 def max_predictions @max_predictions end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
17801 17802 17803 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17801 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property precisionAt1
17807 17808 17809 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17807 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
17812 17813 17814 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17812 def recall @recall end |
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
DataItem.
Corresponds to the JSON property recallAt1
17819 17820 17821 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17819 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
17825 17826 17827 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17825 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
17830 17831 17832 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17830 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 17837 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro) @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @max_predictions = args[:max_predictions] if args.key?(:max_predictions) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |