Class: Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1/classes.rb,
lib/google/apis/aiplatform_v1/representations.rb,
lib/google/apis/aiplatform_v1/representations.rb
Instance Attribute Summary collapse
-
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
-
#disable_early_stopping ⇒ Boolean
(also: #disable_early_stopping?)
Use the entire training budget.
-
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
-
#optimization_objective ⇒ String
Objective function the model is optimizing towards.
-
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision".
-
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall".
-
#prediction_type ⇒ String
The type of prediction the Model is to produce.
-
#target_column ⇒ String
The column name of the target column that the model is to predict.
-
#train_budget_milli_node_hours ⇒ Fixnum
Required.
-
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column.
-
#weight_column_name ⇒ String
Column name that should be used as the weight column.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
constructor
A new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs
Returns a new instance of GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputs.
21261 21262 21263 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21261 def initialize(**args) update!(**args) end |
Instance Attribute Details
#additional_experiments ⇒ Array<String>
Additional experiment flags for the Tables training pipeline.
Corresponds to the JSON property additionalExperiments
21173 21174 21175 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21173 def additional_experiments @additional_experiments end |
#disable_early_stopping ⇒ Boolean Also known as: disable_early_stopping?
Use the entire training budget. This disables the early stopping feature. By
default, the early stopping feature is enabled, which means that AutoML Tables
might stop training before the entire training budget has been used.
Corresponds to the JSON property disableEarlyStopping
21180 21181 21182 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21180 def disable_early_stopping @disable_early_stopping end |
#export_evaluated_data_items_config ⇒ Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig
Configuration for exporting test set predictions to a BigQuery table.
Corresponds to the JSON property exportEvaluatedDataItemsConfig
21186 21187 21188 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21186 def export_evaluated_data_items_config @export_evaluated_data_items_config end |
#optimization_objective ⇒ String
Objective function the model is optimizing towards. The training process
creates a model that maximizes/minimizes the value of the objective function
over the validation set. The supported optimization objectives depend on the
prediction type. If the field is not set, a default objective function is used.
classification (binary): "maximize-au-roc" (default) - Maximize the area
under the receiver operating characteristic (ROC) curve. "minimize-log-loss" -
Minimize log loss. "maximize-au-prc" - Maximize the area under the precision-
recall curve. "maximize-precision-at-recall" - Maximize precision for a
specified recall value. "maximize-recall-at-precision" - Maximize recall for a
specified precision value. classification (multi-class): "minimize-log-loss" (
default) - Minimize log loss. regression: "minimize-rmse" (default) - Minimize
root-mean-squared error (RMSE). "minimize-mae" - Minimize mean-absolute error (
MAE). "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
Corresponds to the JSON property optimizationObjective
21203 21204 21205 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21203 def optimization_objective @optimization_objective end |
#optimization_objective_precision_value ⇒ Float
Required when optimization_objective is "maximize-recall-at-precision". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectivePrecisionValue
21209 21210 21211 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21209 def optimization_objective_precision_value @optimization_objective_precision_value end |
#optimization_objective_recall_value ⇒ Float
Required when optimization_objective is "maximize-precision-at-recall". Must
be between 0 and 1, inclusive.
Corresponds to the JSON property optimizationObjectiveRecallValue
21215 21216 21217 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21215 def optimization_objective_recall_value @optimization_objective_recall_value end |
#prediction_type ⇒ String
The type of prediction the Model is to produce. "classification" - Predict one
out of multiple target values is picked for each row. "regression" - Predict a
value based on its relation to other values. This type is available only to
columns that contain semantically numeric values, i.e. integers or floating
point number, even if stored as e.g. strings.
Corresponds to the JSON property predictionType
21224 21225 21226 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21224 def prediction_type @prediction_type end |
#target_column ⇒ String
The column name of the target column that the model is to predict.
Corresponds to the JSON property targetColumn
21229 21230 21231 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21229 def target_column @target_column end |
#train_budget_milli_node_hours ⇒ Fixnum
Required. The train budget of creating this model, expressed in milli node
hours i.e. 1,000 value in this field means 1 node hour. The training cost of
the model will not exceed this budget. The final cost will be attempted to be
close to the budget, though may end up being (even) noticeably smaller - at
the backend's discretion. This especially may happen when further model
training ceases to provide any improvements. If the budget is set to a value
known to be insufficient to train a model for the given dataset, the training
won't be attempted and will error. The train budget must be between 1,000 and
72,000 milli node hours, inclusive.
Corresponds to the JSON property trainBudgetMilliNodeHours
21242 21243 21244 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21242 def train_budget_milli_node_hours @train_budget_milli_node_hours end |
#transformations ⇒ Array<Google::Apis::AiplatformV1::GoogleCloudAiplatformV1SchemaTrainingjobDefinitionAutoMlTablesInputsTransformation>
Each transformation will apply transform function to given input column. And
the result will be used for training. When creating transformation for
BigQuery Struct column, the column should be flattened using "." as the
delimiter.
Corresponds to the JSON property transformations
21250 21251 21252 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21250 def transformations @transformations end |
#weight_column_name ⇒ String
Column name that should be used as the weight column. Higher values in this
column give more importance to the row during model training. The column must
have numeric values between 0 and 10000 inclusively; 0 means the row is
ignored for training. If weight column field is not set, then all rows are
assumed to have equal weight of 1.
Corresponds to the JSON property weightColumnName
21259 21260 21261 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21259 def weight_column_name @weight_column_name end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 |
# File 'lib/google/apis/aiplatform_v1/classes.rb', line 21266 def update!(**args) @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments) @disable_early_stopping = args[:disable_early_stopping] if args.key?(:disable_early_stopping) @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config) @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective) @optimization_objective_precision_value = args[:optimization_objective_precision_value] if args.key?(:optimization_objective_precision_value) @optimization_objective_recall_value = args[:optimization_objective_recall_value] if args.key?(:optimization_objective_recall_value) @prediction_type = args[:prediction_type] if args.key?(:prediction_type) @target_column = args[:target_column] if args.key?(:target_column) @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours) @transformations = args[:transformations] if args.key?(:transformations) @weight_column_name = args[:weight_column_name] if args.key?(:weight_column_name) end |