Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata

Returns a new instance of GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata.



5575
5576
5577
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5575

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#dense_shape_tensor_nameString

Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https:// www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property denseShapeTensorName

Returns:

  • (String)


5488
5489
5490
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5488

def dense_shape_tensor_name
  @dense_shape_tensor_name
end

#encoded_baselinesArray<Object>

A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor. Corresponds to the JSON property encodedBaselines

Returns:

  • (Array<Object>)


5495
5496
5497
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5495

def encoded_baselines
  @encoded_baselines
end

#encoded_tensor_nameString

Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table. Corresponds to the JSON property encodedTensorName

Returns:

  • (String)


5503
5504
5505
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5503

def encoded_tensor_name
  @encoded_tensor_name
end

#encodingString

Defines how the feature is encoded into the input tensor. Defaults to IDENTITY. Corresponds to the JSON property encoding

Returns:

  • (String)


5508
5509
5510
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5508

def encoding
  @encoding
end

#feature_value_domainGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadataFeatureValueDomain

Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre- processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. Corresponds to the JSON property featureValueDomain



5520
5521
5522
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5520

def feature_value_domain
  @feature_value_domain
end

#group_nameString

Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name. Corresponds to the JSON property groupName

Returns:

  • (String)


5529
5530
5531
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5529

def group_name
  @group_name
end

#index_feature_mappingArray<String>

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. Corresponds to the JSON property indexFeatureMapping

Returns:

  • (Array<String>)


5536
5537
5538
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5536

def index_feature_mapping
  @index_feature_mapping
end

#indices_tensor_nameString

Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property indicesTensorName

Returns:

  • (String)


5543
5544
5545
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5543

def indices_tensor_name
  @indices_tensor_name
end

#input_baselinesArray<Object>

Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution. feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2. x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri. Corresponds to the JSON property inputBaselines

Returns:

  • (Array<Object>)


5557
5558
5559
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5557

def input_baselines
  @input_baselines
end

#input_tensor_nameString

Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow. Corresponds to the JSON property inputTensorName

Returns:

  • (String)


5563
5564
5565
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5563

def input_tensor_name
  @input_tensor_name
end

#modalityString

Modality of the feature. Valid values are: numeric, image. Defaults to numeric. Corresponds to the JSON property modality

Returns:

  • (String)


5568
5569
5570
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5568

def modality
  @modality
end

#visualizationGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadataVisualization

Visualization configurations for image explanation. Corresponds to the JSON property visualization



5573
5574
5575
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5573

def visualization
  @visualization
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 5580

def update!(**args)
  @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name)
  @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines)
  @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name)
  @encoding = args[:encoding] if args.key?(:encoding)
  @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain)
  @group_name = args[:group_name] if args.key?(:group_name)
  @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping)
  @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name)
  @input_baselines = args[:input_baselines] if args.key?(:input_baselines)
  @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name)
  @modality = args[:modality] if args.key?(:modality)
  @visualization = args[:visualization] if args.key?(:visualization)
end