Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Configuration for vector search.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Returns a new instance of GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig.



7456
7457
7458
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7456

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#brute_force_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigBruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search. Corresponds to the JSON property bruteForceConfig



7418
7419
7420
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7418

def brute_force_config
  @brute_force_config
end

#crowding_columnString

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute. Corresponds to the JSON property crowdingColumn

Returns:

  • (String)


7426
7427
7428
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7426

def crowding_column
  @crowding_column
end

#distance_measure_typeString

Optional. The distance measure used in nearest neighbor search. Corresponds to the JSON property distanceMeasureType

Returns:

  • (String)


7431
7432
7433
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7431

def distance_measure_type
  @distance_measure_type
end

#embedding_columnString

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search. Corresponds to the JSON property embeddingColumn

Returns:

  • (String)


7437
7438
7439
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7437

def embedding_column
  @embedding_column
end

#embedding_dimensionFixnum

Optional. The number of dimensions of the input embedding. Corresponds to the JSON property embeddingDimension

Returns:

  • (Fixnum)


7442
7443
7444
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7442

def embedding_dimension
  @embedding_dimension
end

#filter_columnsArray<String>

Optional. Columns of features that're used to filter vector search results. Corresponds to the JSON property filterColumns

Returns:

  • (Array<String>)


7447
7448
7449
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7447

def filter_columns
  @filter_columns
end

#tree_ah_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigTreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https:// arxiv.org/abs/1908.10396 Corresponds to the JSON property treeAhConfig



7454
7455
7456
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7454

def tree_ah_config
  @tree_ah_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



7461
7462
7463
7464
7465
7466
7467
7468
7469
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7461

def update!(**args)
  @brute_force_config = args[:brute_force_config] if args.key?(:brute_force_config)
  @crowding_column = args[:crowding_column] if args.key?(:crowding_column)
  @distance_measure_type = args[:distance_measure_type] if args.key?(:distance_measure_type)
  @embedding_column = args[:embedding_column] if args.key?(:embedding_column)
  @embedding_dimension = args[:embedding_dimension] if args.key?(:embedding_dimension)
  @filter_columns = args[:filter_columns] if args.key?(:filter_columns)
  @tree_ah_config = args[:tree_ah_config] if args.key?(:tree_ah_config)
end