Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob

Returns a new instance of GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob.



12050
12051
12052
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12050

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#analysis_instance_schema_uriString

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/ response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string. Corresponds to the JSON property analysisInstanceSchemaUri

Returns:

  • (String)


11905
11906
11907
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11905

def analysis_instance_schema_uri
  @analysis_instance_schema_uri
end

#bigquery_tablesArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum: 1. Training data logging predict request/response 2. Serving data logging predict request/response Corresponds to the JSON property bigqueryTables



11913
11914
11915
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11913

def bigquery_tables
  @bigquery_tables
end

#create_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was created. Corresponds to the JSON property createTime

Returns:

  • (String)


11918
11919
11920
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11918

def create_time
  @create_time
end

#display_nameString

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property displayName

Returns:

  • (String)


11925
11926
11927
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11925

def display_name
  @display_name
end

#enable_monitoring_pipeline_logsBoolean Also known as: enable_monitoring_pipeline_logs?

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing. Corresponds to the JSON property enableMonitoringPipelineLogs

Returns:

  • (Boolean)


11933
11934
11935
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11933

def enable_monitoring_pipeline_logs
  @enable_monitoring_pipeline_logs
end

#encryption_specGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec

Represents a customer-managed encryption key spec that can be applied to a top- level resource. Corresponds to the JSON property encryptionSpec



11940
11941
11942
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11940

def encryption_spec
  @encryption_spec
end

#endpointString

Required. Endpoint resource name. Format: projects/project/locations/ location/endpoints/endpoint` Corresponds to the JSON propertyendpoint`

Returns:

  • (String)


11946
11947
11948
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11946

def endpoint
  @endpoint
end

#errorGoogle::Apis::AiplatformV1beta1::GoogleRpcStatus

The Status type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by gRPC. Each Status message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the API Design Guide. Corresponds to the JSON property error



11956
11957
11958
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11956

def error
  @error
end

#labelsHash<String,String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Corresponds to the JSON property labels

Returns:

  • (Hash<String,String>)


11965
11966
11967
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11965

def labels
  @labels
end

#latest_monitoring_pipeline_metadataGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata

All metadata of most recent monitoring pipelines. Corresponds to the JSON property latestMonitoringPipelineMetadata



11970
11971
11972
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11970

def 
  @latest_monitoring_pipeline_metadata
end

#log_ttlString

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second: 3600 indicates ttl = 1 day. Corresponds to the JSON property logTtl

Returns:

  • (String)


11977
11978
11979
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11977

def log_ttl
  @log_ttl
end

#logging_sampling_strategyGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SamplingStrategy

Sampling Strategy for logging, can be for both training and prediction dataset. Corresponds to the JSON property loggingSamplingStrategy



11982
11983
11984
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11982

def logging_sampling_strategy
  @logging_sampling_strategy
end

#model_deployment_monitoring_objective_configsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately. Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs



11988
11989
11990
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11988

def model_deployment_monitoring_objective_configs
  @model_deployment_monitoring_objective_configs
end

#model_deployment_monitoring_schedule_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringScheduleConfig

The config for scheduling monitoring job. Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig



11993
11994
11995
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11993

def model_deployment_monitoring_schedule_config
  @model_deployment_monitoring_schedule_config
end

#model_monitoring_alert_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringAlertConfig

Alert config for model monitoring. Corresponds to the JSON property modelMonitoringAlertConfig



11998
11999
12000
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 11998

def model_monitoring_alert_config
  @model_monitoring_alert_config
end

#nameString

Output only. Resource name of a ModelDeploymentMonitoringJob. Corresponds to the JSON property name

Returns:

  • (String)


12003
12004
12005
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12003

def name
  @name
end

#next_schedule_timeString

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round. Corresponds to the JSON property nextScheduleTime

Returns:

  • (String)


12009
12010
12011
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12009

def next_schedule_time
  @next_schedule_time
end

#predict_instance_schema_uriString

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property predictInstanceSchemaUri

Returns:

  • (String)


12016
12017
12018
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12016

def predict_instance_schema_uri
  @predict_instance_schema_uri
end

#sample_predict_instanceObject

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob. predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests. Corresponds to the JSON property samplePredictInstance

Returns:

  • (Object)


12024
12025
12026
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12024

def sample_predict_instance
  @sample_predict_instance
end

#schedule_stateString

Output only. Schedule state when the monitoring job is in Running state. Corresponds to the JSON property scheduleState

Returns:

  • (String)


12029
12030
12031
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12029

def schedule_state
  @schedule_state
end

#stateString

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'. Corresponds to the JSON property state

Returns:

  • (String)


12037
12038
12039
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12037

def state
  @state
end

#stats_anomalies_base_directoryGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1GcsDestination

The Google Cloud Storage location where the output is to be written to. Corresponds to the JSON property statsAnomaliesBaseDirectory



12042
12043
12044
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12042

def stats_anomalies_base_directory
  @stats_anomalies_base_directory
end

#update_timeString

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. Corresponds to the JSON property updateTime

Returns:

  • (String)


12048
12049
12050
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12048

def update_time
  @update_time
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 12055

def update!(**args)
  @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri)
  @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables)
  @create_time = args[:create_time] if args.key?(:create_time)
  @display_name = args[:display_name] if args.key?(:display_name)
  @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs)
  @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec)
  @endpoint = args[:endpoint] if args.key?(:endpoint)
  @error = args[:error] if args.key?(:error)
  @labels = args[:labels] if args.key?(:labels)
  @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata)
  @log_ttl = args[:log_ttl] if args.key?(:log_ttl)
  @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy)
  @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs)
  @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config)
  @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config)
  @name = args[:name] if args.key?(:name)
  @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time)
  @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri)
  @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance)
  @schedule_state = args[:schedule_state] if args.key?(:schedule_state)
  @state = args[:state] if args.key?(:state)
  @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory)
  @update_time = args[:update_time] if args.key?(:update_time)
end