Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Instance Attribute Summary collapse
-
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns predictions with score lower than this value.
-
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
-
#f1_score ⇒ Float
The harmonic mean of recall and precision.
-
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
-
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
-
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
-
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created label.
-
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
-
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
-
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the
confidenceThreshold
. -
#precision ⇒ Float
Precision for the given confidence threshold.
-
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
-
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each DataItem.
-
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would, they would not match a ground truth label.
-
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics.
17705 17706 17707 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17705 def initialize(**args) update!(**args) end |
Instance Attribute Details
#confidence_threshold ⇒ Float
Metrics are computed with an assumption that the Model never returns
predictions with score lower than this value.
Corresponds to the JSON property confidenceThreshold
17614 17615 17616 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17614 def confidence_threshold @confidence_threshold end |
#confusion_matrix ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsConfusionMatrix
Confusion matrix of the evaluation for this confidence_threshold.
Corresponds to the JSON property confusionMatrix
17619 17620 17621 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17619 def confusion_matrix @confusion_matrix end |
#f1_score ⇒ Float
The harmonic mean of recall and precision. For summary metrics, it computes
the micro-averaged F1 score.
Corresponds to the JSON property f1Score
17625 17626 17627 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17625 def f1_score @f1_score end |
#f1_score_at1 ⇒ Float
The harmonic mean of recallAt1 and precisionAt1.
Corresponds to the JSON property f1ScoreAt1
17630 17631 17632 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17630 def f1_score_at1 @f1_score_at1 end |
#f1_score_macro ⇒ Float
Macro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMacro
17635 17636 17637 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17635 def f1_score_macro @f1_score_macro end |
#f1_score_micro ⇒ Float
Micro-averaged F1 Score.
Corresponds to the JSON property f1ScoreMicro
17640 17641 17642 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17640 def f1_score_micro @f1_score_micro end |
#false_negative_count ⇒ Fixnum
The number of ground truth labels that are not matched by a Model created
label.
Corresponds to the JSON property falseNegativeCount
17646 17647 17648 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17646 def false_negative_count @false_negative_count end |
#false_positive_count ⇒ Fixnum
The number of Model created labels that do not match a ground truth label.
Corresponds to the JSON property falsePositiveCount
17651 17652 17653 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17651 def false_positive_count @false_positive_count end |
#false_positive_rate ⇒ Float
False Positive Rate for the given confidence threshold.
Corresponds to the JSON property falsePositiveRate
17656 17657 17658 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17656 def false_positive_rate @false_positive_rate end |
#false_positive_rate_at1 ⇒ Float
The False Positive Rate when only considering the label that has the highest
prediction score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property falsePositiveRateAt1
17662 17663 17664 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17662 def false_positive_rate_at1 @false_positive_rate_at1 end |
#max_predictions ⇒ Fixnum
Metrics are computed with an assumption that the Model always returns at most
this many predictions (ordered by their score, descendingly), but they all
still need to meet the confidenceThreshold
.
Corresponds to the JSON property maxPredictions
17669 17670 17671 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17669 def max_predictions @max_predictions end |
#precision ⇒ Float
Precision for the given confidence threshold.
Corresponds to the JSON property precision
17674 17675 17676 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17674 def precision @precision end |
#precision_at1 ⇒ Float
The precision when only considering the label that has the highest prediction
score and not below the confidence threshold for each DataItem.
Corresponds to the JSON property precisionAt1
17680 17681 17682 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17680 def precision_at1 @precision_at1 end |
#recall ⇒ Float
Recall (True Positive Rate) for the given confidence threshold.
Corresponds to the JSON property recall
17685 17686 17687 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17685 def recall @recall end |
#recall_at1 ⇒ Float
The Recall (True Positive Rate) when only considering the label that has the
highest prediction score and not below the confidence threshold for each
DataItem.
Corresponds to the JSON property recallAt1
17692 17693 17694 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17692 def recall_at1 @recall_at1 end |
#true_negative_count ⇒ Fixnum
The number of labels that were not created by the Model, but if they would,
they would not match a ground truth label.
Corresponds to the JSON property trueNegativeCount
17698 17699 17700 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17698 def true_negative_count @true_negative_count end |
#true_positive_count ⇒ Fixnum
The number of Model created labels that match a ground truth label.
Corresponds to the JSON property truePositiveCount
17703 17704 17705 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17703 def true_positive_count @true_positive_count end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17710 def update!(**args) @confidence_threshold = args[:confidence_threshold] if args.key?(:confidence_threshold) @confusion_matrix = args[:confusion_matrix] if args.key?(:confusion_matrix) @f1_score = args[:f1_score] if args.key?(:f1_score) @f1_score_at1 = args[:f1_score_at1] if args.key?(:f1_score_at1) @f1_score_macro = args[:f1_score_macro] if args.key?(:f1_score_macro) @f1_score_micro = args[:f1_score_micro] if args.key?(:f1_score_micro) @false_negative_count = args[:false_negative_count] if args.key?(:false_negative_count) @false_positive_count = args[:false_positive_count] if args.key?(:false_positive_count) @false_positive_rate = args[:false_positive_rate] if args.key?(:false_positive_rate) @false_positive_rate_at1 = args[:false_positive_rate_at1] if args.key?(:false_positive_rate_at1) @max_predictions = args[:max_predictions] if args.key?(:max_predictions) @precision = args[:precision] if args.key?(:precision) @precision_at1 = args[:precision_at1] if args.key?(:precision_at1) @recall = args[:recall] if args.key?(:recall) @recall_at1 = args[:recall_at1] if args.key?(:recall_at1) @true_negative_count = args[:true_negative_count] if args.key?(:true_negative_count) @true_positive_count = args[:true_positive_count] if args.key?(:true_positive_count) end |