Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Metrics for forecasting evaluation results.
Instance Attribute Summary collapse
-
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
-
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error.
-
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
-
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient.
-
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
-
#root_mean_squared_log_error ⇒ Float
Root mean squared log error.
-
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error.
-
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
constructor
A new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics
Returns a new instance of GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetrics.
17843 17844 17845 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17843 def initialize(**args) update!(**args) end |
Instance Attribute Details
#mean_absolute_error ⇒ Float
Mean Absolute Error (MAE).
Corresponds to the JSON property meanAbsoluteError
17800 17801 17802 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17800 def mean_absolute_error @mean_absolute_error end |
#mean_absolute_percentage_error ⇒ Float
Mean absolute percentage error. Infinity when there are zeros in the ground
truth.
Corresponds to the JSON property meanAbsolutePercentageError
17806 17807 17808 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17806 def mean_absolute_percentage_error @mean_absolute_percentage_error end |
#quantile_metrics ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaModelevaluationMetricsForecastingEvaluationMetricsQuantileMetricsEntry>
The quantile metrics entries for each quantile.
Corresponds to the JSON property quantileMetrics
17811 17812 17813 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17811 def quantile_metrics @quantile_metrics end |
#r_squared ⇒ Float
Coefficient of determination as Pearson correlation coefficient. Undefined
when ground truth or predictions are constant or near constant.
Corresponds to the JSON property rSquared
17817 17818 17819 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17817 def r_squared @r_squared end |
#root_mean_squared_error ⇒ Float
Root Mean Squared Error (RMSE).
Corresponds to the JSON property rootMeanSquaredError
17822 17823 17824 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17822 def root_mean_squared_error @root_mean_squared_error end |
#root_mean_squared_log_error ⇒ Float
Root mean squared log error. Undefined when there are negative ground truth
values or predictions.
Corresponds to the JSON property rootMeanSquaredLogError
17828 17829 17830 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17828 def root_mean_squared_log_error @root_mean_squared_log_error end |
#root_mean_squared_percentage_error ⇒ Float
Root Mean Square Percentage Error. Square root of MSPE. Undefined/imaginary
when MSPE is negative.
Corresponds to the JSON property rootMeanSquaredPercentageError
17834 17835 17836 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17834 def root_mean_squared_percentage_error @root_mean_squared_percentage_error end |
#weighted_absolute_percentage_error ⇒ Float
Weighted Absolute Percentage Error. Does not use weights, this is just what
the metric is called. Undefined if actual values sum to zero. Will be very
large if actual values sum to a very small number.
Corresponds to the JSON property weightedAbsolutePercentageError
17841 17842 17843 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17841 def weighted_absolute_percentage_error @weighted_absolute_percentage_error end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 17848 def update!(**args) @mean_absolute_error = args[:mean_absolute_error] if args.key?(:mean_absolute_error) @mean_absolute_percentage_error = args[:mean_absolute_percentage_error] if args.key?(:mean_absolute_percentage_error) @quantile_metrics = args[:quantile_metrics] if args.key?(:quantile_metrics) @r_squared = args[:r_squared] if args.key?(:r_squared) @root_mean_squared_error = args[:root_mean_squared_error] if args.key?(:root_mean_squared_error) @root_mean_squared_log_error = args[:root_mean_squared_log_error] if args.key?(:root_mean_squared_log_error) @root_mean_squared_percentage_error = args[:root_mean_squared_percentage_error] if args.key?(:root_mean_squared_percentage_error) @weighted_absolute_percentage_error = args[:weighted_absolute_percentage_error] if args.key?(:weighted_absolute_percentage_error) end |