Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputs

Returns a new instance of GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputs.



20246
20247
20248
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20246

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#additional_experimentsArray<String>

Additional experiment flags for the time series forcasting training. Corresponds to the JSON property additionalExperiments

Returns:

  • (Array<String>)


20082
20083
20084
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20082

def additional_experiments
  @additional_experiments
end

#available_at_forecast_columnsArray<String>

Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day. Corresponds to the JSON property availableAtForecastColumns

Returns:

  • (Array<String>)


20090
20091
20092
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20090

def available_at_forecast_columns
  @available_at_forecast_columns
end

#context_windowFixnum

The amount of time into the past training and prediction data is used for model training and prediction respectively. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property contextWindow

Returns:

  • (Fixnum)


20097
20098
20099
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20097

def context_window
  @context_window
end

#data_granularityGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsGranularity

A duration of time expressed in time granularity units. Corresponds to the JSON property dataGranularity



20102
20103
20104
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20102

def data_granularity
  @data_granularity
end

#enable_probabilistic_inferenceBoolean Also known as: enable_probabilistic_inference?

If probabilistic inference is enabled, the model will fit a distribution that captures the uncertainty of a prediction. At inference time, the predictive distribution is used to make a point prediction that minimizes the optimization objective. For example, the mean of a predictive distribution is the point prediction that minimizes RMSE loss. If quantiles are specified, then the quantiles of the distribution are also returned. The optimization objective cannot be minimize-quantile-loss. Corresponds to the JSON property enableProbabilisticInference

Returns:

  • (Boolean)


20113
20114
20115
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20113

def enable_probabilistic_inference
  @enable_probabilistic_inference
end

#export_evaluated_data_items_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table. Corresponds to the JSON property exportEvaluatedDataItemsConfig



20119
20120
20121
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20119

def export_evaluated_data_items_config
  @export_evaluated_data_items_config
end

#forecast_horizonFixnum

The amount of time into the future for which forecasted values for the target are returned. Expressed in number of units defined by the data_granularity field. Corresponds to the JSON property forecastHorizon

Returns:

  • (Fixnum)


20126
20127
20128
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20126

def forecast_horizon
  @forecast_horizon
end

#hierarchy_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionHierarchyConfig

Configuration that defines the hierarchical relationship of time series and parameters for hierarchical forecasting strategies. Corresponds to the JSON property hierarchyConfig



20132
20133
20134
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20132

def hierarchy_config
  @hierarchy_config
end

#holiday_regionsArray<String>

The geographical region based on which the holiday effect is applied in modeling by adding holiday categorical array feature that include all holidays matching the date. This option only allowed when data_granularity is day. By default, holiday effect modeling is disabled. To turn it on, specify the holiday region using this option. Corresponds to the JSON property holidayRegions

Returns:

  • (Array<String>)


20141
20142
20143
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20141

def holiday_regions
  @holiday_regions
end

#optimization_objectiveString

Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set. The supported optimization objectives: * "minimize-rmse" ( default) - Minimize root-mean-squared error (RMSE). * "minimize-mae" - Minimize mean-absolute error (MAE). * "minimize-rmsle" - Minimize root-mean- squared log error (RMSLE). * "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE). * "minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE). * " minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in quantiles. * "minimize-mape" - Minimize the mean absolute percentage error. Corresponds to the JSON property optimizationObjective

Returns:

  • (String)


20156
20157
20158
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20156

def optimization_objective
  @optimization_objective
end

#quantilesArray<Float>

Quantiles to use for minimize-quantile-loss optimization_objective, or for probabilistic inference. Up to 5 quantiles are allowed of values between 0 and 1, exclusive. Required if the value of optimization_objective is minimize- quantile-loss. Represents the percent quantiles to use for that objective. Quantiles must be unique. Corresponds to the JSON property quantiles

Returns:

  • (Array<Float>)


20165
20166
20167
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20165

def quantiles
  @quantiles
end

#target_columnString

The name of the column that the Model is to predict values for. This column must be unavailable at forecast. Corresponds to the JSON property targetColumn

Returns:

  • (String)


20171
20172
20173
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20171

def target_column
  @target_column
end

#time_columnString

The name of the column that identifies time order in the time series. This column must be available at forecast. Corresponds to the JSON property timeColumn

Returns:

  • (String)


20177
20178
20179
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20177

def time_column
  @time_column
end

#time_series_attribute_columnsArray<String>

Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color. Corresponds to the JSON property timeSeriesAttributeColumns

Returns:

  • (Array<String>)


20184
20185
20186
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20184

def time_series_attribute_columns
  @time_series_attribute_columns
end

#time_series_identifier_columnString

The name of the column that identifies the time series. Corresponds to the JSON property timeSeriesIdentifierColumn

Returns:

  • (String)


20189
20190
20191
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20189

def time_series_identifier_column
  @time_series_identifier_column
end

#train_budget_milli_node_hoursFixnum

Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements. If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error. The train budget must be between 1,000 and 72,000 milli node hours, inclusive. Corresponds to the JSON property trainBudgetMilliNodeHours

Returns:

  • (Fixnum)


20202
20203
20204
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20202

def train_budget_milli_node_hours
  @train_budget_milli_node_hours
end

#transformationsArray<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionAutoMlForecastingInputsTransformation>

Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter. Corresponds to the JSON property transformations



20210
20211
20212
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20210

def transformations
  @transformations
end

#unavailable_at_forecast_columnsArray<String>

Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day. Corresponds to the JSON property unavailableAtForecastColumns

Returns:

  • (Array<String>)


20218
20219
20220
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20218

def unavailable_at_forecast_columns
  @unavailable_at_forecast_columns
end

#validation_optionsString

Validation options for the data validation component. The available options are: * "fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails. * "ignore-validation" - ignore the results of the validation and continue Corresponds to the JSON property validationOptions

Returns:

  • (String)


20226
20227
20228
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20226

def validation_options
  @validation_options
end

#weight_columnString

Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1. Corresponds to the JSON property weightColumn

Returns:

  • (String)


20235
20236
20237
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20235

def weight_column
  @weight_column
end

#window_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SchemaTrainingjobDefinitionWindowConfig

Config that contains the strategy used to generate sliding windows in time series training. A window is a series of rows that comprise the context up to the time of prediction, and the horizon following. The corresponding row for each window marks the start of the forecast horizon. Each window is used as an input example for training/evaluation. Corresponds to the JSON property windowConfig



20244
20245
20246
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20244

def window_config
  @window_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 20251

def update!(**args)
  @additional_experiments = args[:additional_experiments] if args.key?(:additional_experiments)
  @available_at_forecast_columns = args[:available_at_forecast_columns] if args.key?(:available_at_forecast_columns)
  @context_window = args[:context_window] if args.key?(:context_window)
  @data_granularity = args[:data_granularity] if args.key?(:data_granularity)
  @enable_probabilistic_inference = args[:enable_probabilistic_inference] if args.key?(:enable_probabilistic_inference)
  @export_evaluated_data_items_config = args[:export_evaluated_data_items_config] if args.key?(:export_evaluated_data_items_config)
  @forecast_horizon = args[:forecast_horizon] if args.key?(:forecast_horizon)
  @hierarchy_config = args[:hierarchy_config] if args.key?(:hierarchy_config)
  @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions)
  @optimization_objective = args[:optimization_objective] if args.key?(:optimization_objective)
  @quantiles = args[:quantiles] if args.key?(:quantiles)
  @target_column = args[:target_column] if args.key?(:target_column)
  @time_column = args[:time_column] if args.key?(:time_column)
  @time_series_attribute_columns = args[:time_series_attribute_columns] if args.key?(:time_series_attribute_columns)
  @time_series_identifier_column = args[:time_series_identifier_column] if args.key?(:time_series_identifier_column)
  @train_budget_milli_node_hours = args[:train_budget_milli_node_hours] if args.key?(:train_budget_milli_node_hours)
  @transformations = args[:transformations] if args.key?(:transformations)
  @unavailable_at_forecast_columns = args[:unavailable_at_forecast_columns] if args.key?(:unavailable_at_forecast_columns)
  @validation_options = args[:validation_options] if args.key?(:validation_options)
  @weight_column = args[:weight_column] if args.key?(:weight_column)
  @window_config = args[:window_config] if args.key?(:window_config)
end