Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Metadata of the input of a feature. Fields other than InputMetadata. input_baselines are applicable only for Models that are using Vertex AI- provided images for Tensorflow.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata

Returns a new instance of GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadata.



7539
7540
7541
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7539

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#dense_shape_tensor_nameString

Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https:// www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property denseShapeTensorName

Returns:

  • (String)


7452
7453
7454
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7452

def dense_shape_tensor_name
  @dense_shape_tensor_name
end

#encoded_baselinesArray<Object>

A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor. Corresponds to the JSON property encodedBaselines

Returns:

  • (Array<Object>)


7459
7460
7461
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7459

def encoded_baselines
  @encoded_baselines
end

#encoded_tensor_nameString

Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table. Corresponds to the JSON property encodedTensorName

Returns:

  • (String)


7467
7468
7469
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7467

def encoded_tensor_name
  @encoded_tensor_name
end

#encodingString

Defines how the feature is encoded into the input tensor. Defaults to IDENTITY. Corresponds to the JSON property encoding

Returns:

  • (String)


7472
7473
7474
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7472

def encoding
  @encoding
end

#feature_value_domainGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadataFeatureValueDomain

Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre- processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. Corresponds to the JSON property featureValueDomain



7484
7485
7486
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7484

def feature_value_domain
  @feature_value_domain
end

#group_nameString

Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name. Corresponds to the JSON property groupName

Returns:

  • (String)


7493
7494
7495
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7493

def group_name
  @group_name
end

#index_feature_mappingArray<String>

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. Corresponds to the JSON property indexFeatureMapping

Returns:

  • (Array<String>)


7500
7501
7502
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7500

def index_feature_mapping
  @index_feature_mapping
end

#indices_tensor_nameString

Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. Corresponds to the JSON property indicesTensorName

Returns:

  • (String)


7507
7508
7509
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7507

def indices_tensor_name
  @indices_tensor_name
end

#input_baselinesArray<Object>

Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution. feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2. x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri. Corresponds to the JSON property inputBaselines

Returns:

  • (Array<Object>)


7521
7522
7523
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7521

def input_baselines
  @input_baselines
end

#input_tensor_nameString

Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow. Corresponds to the JSON property inputTensorName

Returns:

  • (String)


7527
7528
7529
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7527

def input_tensor_name
  @input_tensor_name
end

#modalityString

Modality of the feature. Valid values are: numeric, image. Defaults to numeric. Corresponds to the JSON property modality

Returns:

  • (String)


7532
7533
7534
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7532

def modality
  @modality
end

#visualizationGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ExplanationMetadataInputMetadataVisualization

Visualization configurations for image explanation. Corresponds to the JSON property visualization



7537
7538
7539
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7537

def visualization
  @visualization
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 7544

def update!(**args)
  @dense_shape_tensor_name = args[:dense_shape_tensor_name] if args.key?(:dense_shape_tensor_name)
  @encoded_baselines = args[:encoded_baselines] if args.key?(:encoded_baselines)
  @encoded_tensor_name = args[:encoded_tensor_name] if args.key?(:encoded_tensor_name)
  @encoding = args[:encoding] if args.key?(:encoding)
  @feature_value_domain = args[:feature_value_domain] if args.key?(:feature_value_domain)
  @group_name = args[:group_name] if args.key?(:group_name)
  @index_feature_mapping = args[:index_feature_mapping] if args.key?(:index_feature_mapping)
  @indices_tensor_name = args[:indices_tensor_name] if args.key?(:indices_tensor_name)
  @input_baselines = args[:input_baselines] if args.key?(:input_baselines)
  @input_tensor_name = args[:input_tensor_name] if args.key?(:input_tensor_name)
  @modality = args[:modality] if args.key?(:modality)
  @visualization = args[:visualization] if args.key?(:visualization)
end