Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb

Overview

Deprecated. Use IndexConfig instead.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig

Returns a new instance of GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfig.



9642
9643
9644
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9642

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#brute_force_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigBruteForceConfig

Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search. Corresponds to the JSON property bruteForceConfig



9602
9603
9604
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9602

def brute_force_config
  @brute_force_config
end

#crowding_columnString

Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService. SearchNearestEntities to diversify search results. If NearestNeighborQuery. per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response. Corresponds to the JSON property crowdingColumn

Returns:

  • (String)


9612
9613
9614
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9612

def crowding_column
  @crowding_column
end

#distance_measure_typeString

Optional. The distance measure used in nearest neighbor search. Corresponds to the JSON property distanceMeasureType

Returns:

  • (String)


9617
9618
9619
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9617

def distance_measure_type
  @distance_measure_type
end

#embedding_columnString

Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search. Corresponds to the JSON property embeddingColumn

Returns:

  • (String)


9623
9624
9625
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9623

def embedding_column
  @embedding_column
end

#embedding_dimensionFixnum

Optional. The number of dimensions of the input embedding. Corresponds to the JSON property embeddingDimension

Returns:

  • (Fixnum)


9628
9629
9630
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9628

def embedding_dimension
  @embedding_dimension
end

#filter_columnsArray<String>

Optional. Columns of features that're used to filter vector search results. Corresponds to the JSON property filterColumns

Returns:

  • (Array<String>)


9633
9634
9635
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9633

def filter_columns
  @filter_columns
end

#tree_ah_configGoogle::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1FeatureViewVectorSearchConfigTreeAhConfig

Optional. Configuration options for the tree-AH algorithm (Shallow tree + Asymmetric Hashing). Please refer to this paper for more details: https:// arxiv.org/abs/1908.10396 Corresponds to the JSON property treeAhConfig



9640
9641
9642
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9640

def tree_ah_config
  @tree_ah_config
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



9647
9648
9649
9650
9651
9652
9653
9654
9655
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 9647

def update!(**args)
  @brute_force_config = args[:brute_force_config] if args.key?(:brute_force_config)
  @crowding_column = args[:crowding_column] if args.key?(:crowding_column)
  @distance_measure_type = args[:distance_measure_type] if args.key?(:distance_measure_type)
  @embedding_column = args[:embedding_column] if args.key?(:embedding_column)
  @embedding_dimension = args[:embedding_dimension] if args.key?(:embedding_dimension)
  @filter_columns = args[:filter_columns] if args.key?(:filter_columns)
  @tree_ah_config = args[:tree_ah_config] if args.key?(:tree_ah_config)
end