Class: Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob
- Inherits:
-
Object
- Object
- Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/aiplatform_v1beta1/classes.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb,
lib/google/apis/aiplatform_v1beta1/representations.rb
Overview
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Instance Attribute Summary collapse
-
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
-
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringBigQueryTable>
Output only.
-
#create_time ⇒ String
Output only.
-
#display_name ⇒ String
Required.
-
#enable_monitoring_pipeline_logs ⇒ Boolean
(also: #enable_monitoring_pipeline_logs?)
If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected.
-
#encryption_spec ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top- level resource.
-
#endpoint ⇒ String
Required.
-
#error ⇒ Google::Apis::AiplatformV1beta1::GoogleRpcStatus
The
Statustype defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. -
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
-
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
-
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs.
-
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
-
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringObjectiveConfig>
Required.
-
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
-
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringAlertConfig
The alert config for model monitoring.
-
#name ⇒ String
Output only.
-
#next_schedule_time ⇒ String
Output only.
-
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation).
-
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.
-
#schedule_state ⇒ String
Output only.
-
#state ⇒ String
Output only.
-
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1GcsDestination
The Google Cloud Storage location where the output is to be written to.
-
#update_time ⇒ String
Output only.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob
constructor
A new instance of GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob
Returns a new instance of GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJob.
14825 14826 14827 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14825 def initialize(**args) update!(**args) end |
Instance Attribute Details
#analysis_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance that you want
Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the
feature data types are inferred from predict_instance_schema_uri, meaning that
TFDV will use the data in the exact format(data type) as prediction request/
response. If there are any data type differences between predict instance and
TFDV instance, this field can be used to override the schema. For models
trained with Vertex AI, this field must be set as all the fields in predict
instance formatted as string.
Corresponds to the JSON property analysisInstanceSchemaUri
14680 14681 14682 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14680 def analysis_instance_schema_uri @analysis_instance_schema_uri end |
#bigquery_tables ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringBigQueryTable>
Output only. The created bigquery tables for the job under customer project.
Customer could do their own query & analysis. There could be 4 log tables in
maximum: 1. Training data logging predict request/response 2. Serving data
logging predict request/response
Corresponds to the JSON property bigqueryTables
14688 14689 14690 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14688 def bigquery_tables @bigquery_tables end |
#create_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
Corresponds to the JSON property createTime
14693 14694 14695 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14693 def create_time @create_time end |
#display_name ⇒ String
Required. The user-defined name of the ModelDeploymentMonitoringJob. The name
can be up to 128 characters long and can consist of any UTF-8 characters.
Display name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property displayName
14700 14701 14702 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14700 def display_name @display_name end |
#enable_monitoring_pipeline_logs ⇒ Boolean Also known as: enable_monitoring_pipeline_logs?
If true, the scheduled monitoring pipeline logs are sent to Google Cloud
Logging, including pipeline status and anomalies detected. Please note the
logs incur cost, which are subject to Cloud Logging pricing.
Corresponds to the JSON property enableMonitoringPipelineLogs
14708 14709 14710 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14708 def enable_monitoring_pipeline_logs @enable_monitoring_pipeline_logs end |
#encryption_spec ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-
level resource.
Corresponds to the JSON property encryptionSpec
14715 14716 14717 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14715 def encryption_spec @encryption_spec end |
#endpoint ⇒ String
Required. Endpoint resource name. Format: projects/project/locations/
location/endpoints/endpoint`
Corresponds to the JSON propertyendpoint`
14721 14722 14723 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14721 def endpoint @endpoint end |
#error ⇒ Google::Apis::AiplatformV1beta1::GoogleRpcStatus
The Status type defines a logical error model that is suitable for different
programming environments, including REST APIs and RPC APIs. It is used by
gRPC. Each Status message contains three pieces of
data: error code, error message, and error details. You can find out more
about this error model and how to work with it in the API Design Guide.
Corresponds to the JSON property error
14731 14732 14733 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14731 def error @error end |
#labels ⇒ Hash<String,String>
The labels with user-defined metadata to organize your
ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64
characters (Unicode codepoints), can only contain lowercase letters, numeric
characters, underscores and dashes. International characters are allowed. See
https://goo.gl/xmQnxf for more information and examples of labels.
Corresponds to the JSON property labels
14740 14741 14742 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14740 def labels @labels end |
#latest_monitoring_pipeline_metadata ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringJobLatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
Corresponds to the JSON property latestMonitoringPipelineMetadata
14745 14746 14747 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14745 def @latest_monitoring_pipeline_metadata end |
#log_ttl ⇒ String
The TTL of BigQuery tables in user projects which stores logs. A day is the
basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. second:
3600 indicates ttl = 1 day.
Corresponds to the JSON property logTtl
14752 14753 14754 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14752 def log_ttl @log_ttl end |
#logging_sampling_strategy ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
Corresponds to the JSON property loggingSamplingStrategy
14757 14758 14759 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14757 def logging_sampling_strategy @logging_sampling_strategy end |
#model_deployment_monitoring_objective_configs ⇒ Array<Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringObjectiveConfig>
Required. The config for monitoring objectives. This is a per DeployedModel
config. Each DeployedModel needs to be configured separately.
Corresponds to the JSON property modelDeploymentMonitoringObjectiveConfigs
14763 14764 14765 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14763 def model_deployment_monitoring_objective_configs @model_deployment_monitoring_objective_configs end |
#model_deployment_monitoring_schedule_config ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
Corresponds to the JSON property modelDeploymentMonitoringScheduleConfig
14768 14769 14770 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14768 def model_deployment_monitoring_schedule_config @model_deployment_monitoring_schedule_config end |
#model_monitoring_alert_config ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1ModelMonitoringAlertConfig
The alert config for model monitoring.
Corresponds to the JSON property modelMonitoringAlertConfig
14773 14774 14775 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14773 def model_monitoring_alert_config @model_monitoring_alert_config end |
#name ⇒ String
Output only. Resource name of a ModelDeploymentMonitoringJob.
Corresponds to the JSON property name
14778 14779 14780 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14778 def name @name end |
#next_schedule_time ⇒ String
Output only. Timestamp when this monitoring pipeline will be scheduled to run
for the next round.
Corresponds to the JSON property nextScheduleTime
14784 14785 14786 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14784 def next_schedule_time @next_schedule_time end |
#predict_instance_schema_uri ⇒ String
YAML schema file uri describing the format of a single instance, which are
given to format this Endpoint's prediction (and explanation). If not set, we
will generate predict schema from collected predict requests.
Corresponds to the JSON property predictInstanceSchemaUri
14791 14792 14793 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14791 def predict_instance_schema_uri @predict_instance_schema_uri end |
#sample_predict_instance ⇒ Object
Sample Predict instance, same format as PredictRequest.instances, this can be
set as a replacement of ModelDeploymentMonitoringJob.
predict_instance_schema_uri. If not set, we will generate predict schema from
collected predict requests.
Corresponds to the JSON property samplePredictInstance
14799 14800 14801 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14799 def sample_predict_instance @sample_predict_instance end |
#schedule_state ⇒ String
Output only. Schedule state when the monitoring job is in Running state.
Corresponds to the JSON property scheduleState
14804 14805 14806 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14804 def schedule_state @schedule_state end |
#state ⇒ String
Output only. The detailed state of the monitoring job. When the job is still
creating, the state will be 'PENDING'. Once the job is successfully created,
the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume
the job, the state will return to 'RUNNING'.
Corresponds to the JSON property state
14812 14813 14814 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14812 def state @state end |
#stats_anomalies_base_directory ⇒ Google::Apis::AiplatformV1beta1::GoogleCloudAiplatformV1beta1GcsDestination
The Google Cloud Storage location where the output is to be written to.
Corresponds to the JSON property statsAnomaliesBaseDirectory
14817 14818 14819 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14817 def stats_anomalies_base_directory @stats_anomalies_base_directory end |
#update_time ⇒ String
Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most
recently.
Corresponds to the JSON property updateTime
14823 14824 14825 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14823 def update_time @update_time end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 |
# File 'lib/google/apis/aiplatform_v1beta1/classes.rb', line 14830 def update!(**args) @analysis_instance_schema_uri = args[:analysis_instance_schema_uri] if args.key?(:analysis_instance_schema_uri) @bigquery_tables = args[:bigquery_tables] if args.key?(:bigquery_tables) @create_time = args[:create_time] if args.key?(:create_time) @display_name = args[:display_name] if args.key?(:display_name) @enable_monitoring_pipeline_logs = args[:enable_monitoring_pipeline_logs] if args.key?(:enable_monitoring_pipeline_logs) @encryption_spec = args[:encryption_spec] if args.key?(:encryption_spec) @endpoint = args[:endpoint] if args.key?(:endpoint) @error = args[:error] if args.key?(:error) @labels = args[:labels] if args.key?(:labels) @latest_monitoring_pipeline_metadata = args[:latest_monitoring_pipeline_metadata] if args.key?(:latest_monitoring_pipeline_metadata) @log_ttl = args[:log_ttl] if args.key?(:log_ttl) @logging_sampling_strategy = args[:logging_sampling_strategy] if args.key?(:logging_sampling_strategy) @model_deployment_monitoring_objective_configs = args[:model_deployment_monitoring_objective_configs] if args.key?(:model_deployment_monitoring_objective_configs) @model_deployment_monitoring_schedule_config = args[:model_deployment_monitoring_schedule_config] if args.key?(:model_deployment_monitoring_schedule_config) @model_monitoring_alert_config = args[:model_monitoring_alert_config] if args.key?(:model_monitoring_alert_config) @name = args[:name] if args.key?(:name) @next_schedule_time = args[:next_schedule_time] if args.key?(:next_schedule_time) @predict_instance_schema_uri = args[:predict_instance_schema_uri] if args.key?(:predict_instance_schema_uri) @sample_predict_instance = args[:sample_predict_instance] if args.key?(:sample_predict_instance) @schedule_state = args[:schedule_state] if args.key?(:schedule_state) @state = args[:state] if args.key?(:state) @stats_anomalies_base_directory = args[:stats_anomalies_base_directory] if args.key?(:stats_anomalies_base_directory) @update_time = args[:update_time] if args.key?(:update_time) end |